用户画像篇·模型标签之用户行为性别预测

一、性别预测问题

  • 用户注册时,所填写的性别,存在大概率的随意性;
  • 不能完全作为用户画像的性别参考;

所以在无法通过直接手段获得用户真实性别的情况下,需要通过用户的各种行为特征,来对用户的性别进行预测。

二、特征数据选取

(1)比如选取以下的用户特征数据:
category1: 	 30天内买得最多的品类
category2:	     30天内买得第二多的品类
category3:      30天内买得第三多的品类
brand1:         30天内买得最多的品牌
brand2:         30天内买得第二多的品牌
brand3:         30天内买得第三多的品牌
day30_buy_cnts: 30天内的购买单数
day30_buy_amt:  30天内的消费总金额
还可以加:       30天兴趣关键词中的top10个等等...
(2)经验样本数据
label,gid,category1,category2,category3,brand1,brand2,brand3,day30_buy_cnts,day30_buy_amt
0.0,1,105.0,106.0,102.0,1101.0,1108.0,1109.0,20.0,100.0
0,2,105,107,102,1101,1108,1105,25,80
0,3,106,104,102,1102,1108,1109,20,100
0,4,106,107,105,1103,1108,1105,30,90
0,5,112,107,105,2103,1108,1105,38,60
1,6,112,116,112,2101,2107,2109,10,3000
1,7,115,117,112,2103,2107,2105,9,1800
1,8,112,118,113,2102,2108,2109,10,1009
1,9,116,113,118,2103,210
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值