椭圆积分函数和雅各比椭圆函数

椭圆积分函数

  函数 u = F ( φ , k ) = ∫ 0 φ d x 1 − k 2 sin ⁡ 2 x = ∫ 0 s i n φ d x ( 1 − x 2 ) ( 1 − k x 2 ) (1) u=F(\varphi, k)=\int_{0}^{\varphi} \frac{\mathrm{d} x}{\sqrt{1-k^{2} \sin ^{2} x}}=\int_{0}^{sin{\varphi} }\frac{\mathrm{d} x}{\sqrt{(1-x^{2})(1-kx^{2})}}{\tag1} u=F(φ,k)=0φ1k2sin2x dx=0sinφ(1x2)(1kx2) dx(1)

是用积分形式定义的函数,被称为第一类椭圆积分函数。其中 k k k是参数,被称为椭圆积分函数的模长。通常认为 k k k满足不等式 0 ⩽ k < 1 0 \leqslant k<1 0k<1。式(1)的后两项是文献中常用的定义形式。由于在 φ = 0 \varphi=0 φ=0时二式相等,且二式在定义域上的导数均相等,因此很容易看出二者表示的是同一个函数。该函数是单调递增的奇函数。函数在不同的模长 k k k下的图像如下:

k=0

k=0.75

k=0.999
图1

  该函数在 φ = π 2 \varphi=\frac{\pi}{2} φ=2π处的值被称作第一类完全椭圆全积分
K ( k ) = F ( π 2 , k ) = ∫ 0 π / 2 d x 1 − k 2 sin ⁡ 2 x (2) K(k)=F\left(\frac{\pi}{2}, k\right)=\int_{0}^{\pi / 2} \frac{\mathrm{d} x}{\sqrt{1-k^{2} \sin ^{2} x}}{\tag2} K(k)=F(2π,k)=0π/21k2sin2x dx(2)

  当模长 k k k确定后,该值是常数。

雅各比椭圆函数

  第一类椭圆积分函数的反函数称为幅值函数,表示为
φ = a m u \varphi=\mathrm{am} u φ=amu

椭圆正弦函数 z = sn ⁡ ( u , k ) z=\operatorname{sn}(u, k) z=sn(u,k)椭圆余弦函数 z = cn ⁡ ( u , k ) z=\operatorname{cn}(u, k) z=cn(u,k)定义如下:
z = sn ⁡ ( u , k ) = sin ⁡ φ = sin ⁡ am ⁡ u , z = cn ⁡ ( u , k ) = cos ⁡ φ = cos ⁡ am ⁡ u (3) z=\operatorname{sn}(u, k)=\sin \varphi=\sin \operatorname{am} u, \quad z=\operatorname{cn}(u, k)=\cos \varphi=\cos \operatorname{am} u{\tag3} z=sn(u,k)=sinφ=sinamu,z=cn(u,k)=cosφ=cosamu(3)


u + 4 K ( k ) = ∫ 0 φ d x 1 − k 2 sin ⁡ 2 x + 4 ∫ 0 π / 2 d x 1 − k 2 sin ⁡ 2 x = ∫ 0 φ d x 1 − k 2 sin ⁡ 2 x + ∫ 0 2 π d x 1 − k 2 sin ⁡ 2 x = ∫ 0 φ d x 1 − k 2 sin ⁡ 2 x + ∫ φ 2 π + φ d x 1 − k 2 sin ⁡ 2 x = ∫ 0 φ + 2 π d x 1 − k 2 sin ⁡ 2 x \begin{aligned} u+4K(k)=\int_{0}^{\varphi} \frac{\mathrm{d} x}{\sqrt{1-k^{2} \sin ^{2} x}}+4\int_{0}^{\pi / 2} \frac{\mathrm{d} x}{\sqrt{1-k^{2} \sin ^{2} x}} \\ =\int_{0}^{\varphi} \frac{\mathrm{d} x}{\sqrt{1-k^{2} \sin ^{2} x}}+\int_{0}^{2\pi} \frac{\mathrm{d} x}{\sqrt{1-k^{2} \sin ^{2} x}}\\ =\int_{0}^{\varphi} \frac{\mathrm{d} x}{\sqrt{1-k^{2} \sin ^{2} x}}+\int_{\varphi}^{2\pi+\varphi} \frac{\mathrm{d} x}{\sqrt{1-k^{2} \sin ^{2} x}}\\ =\int_{0}^{\varphi+2\pi} \frac{\mathrm{d} x}{\sqrt{1-k^{2} \sin ^{2} x}} \end{aligned} u+4K(k)=0φ1k2sin2x dx+40π/21k2sin2x dx=0φ1k2sin2x dx+02π1k2sin2x dx=0φ1k2sin2x dx+φ2π+φ1k2sin2x dx=0φ+2π1k2sin2x dx

可得

am ⁡ ( u + 4 K ( k ) ) = φ + 2 π \operatorname{am}(u+4K(k))=\varphi+2\pi am(u+4K(k))=φ+2π

因此
sn ⁡ ( u + 4 K ( k ) ) = sin ⁡ am ⁡ ( u + 4 K ( k ) ) = sin ⁡ ( φ + 2 π ) = sin ⁡ ( φ ) = sn ⁡ ( u ) \operatorname{sn}(u+4K(k))=\operatorname{sin}\operatorname{am}(u+4K(k))=\operatorname{sin}(\varphi+2\pi)=\operatorname{sin}(\varphi)=\operatorname{sn}(u) sn(u+4K(k))=sinam(u+4K(k))=sin(φ+2π)=sin(φ)=sn(u)

可见椭圆正弦函数 z = sn ⁡ ( u , k ) z=\operatorname{sn}(u, k) z=sn(u,k)周期为 4 K ( k ) 4K(k) 4K(k)。同理,椭圆余弦函数 z = cn ⁡ ( u , k ) z=\operatorname{cn}(u, k) z=cn(u,k)的周期也为 4 K ( k ) 4K(k) 4K(k)。并且,椭圆正弦函数 z = sn ⁡ ( u , k ) z=\operatorname{sn}(u, k) z=sn(u,k)是奇函数,椭圆余弦函数 z = cn ⁡ ( u , k ) z=\operatorname{cn}(u, k) z=cn(u,k)是偶函数。可见,二者应该有分别与正弦,余弦函数类似的图像。
  定义幅值的 δ \delta δ函数
z = dn ⁡ ( u , k ) = d φ d u = 1 − k 2 sin ⁡ 2 φ = 1 − k 2 sn ⁡ 2 ( u , k ) (4) z=\operatorname{dn}(u, k)=\frac{\mathrm{d} \varphi}{\mathrm{d} u}=\sqrt{1-k^{2} \sin ^{2} \varphi}=\sqrt{1-k^{2} \operatorname{sn}^{2}(u, k)}{\tag4} z=dn(u,k)=dudφ=1k2sin2φ =1k2sn2(u,k) (4)

该函数以 2 K ( k ) 2K(k) 2K(k)为周期。
   sn ⁡ ( u , k ) , cn ⁡ ( u , k ) , dn ⁡ ( u , k ) \operatorname{sn}(u, k),\operatorname{cn}(u, k),\operatorname{dn}(u, k) sn(u,k),cn(u,k),dn(u,k)统称为雅各比椭圆函数,它们之间满足如下容易验证的恒等式。
sn ⁡ 2 u + cn ⁡ 2 u = 1 dn ⁡ 2 u + k 2 sn ⁡ 2 u = 1 (5) \begin{aligned} &\operatorname{sn}^{2} u+\operatorname{cn}^{2} u=1\\ &\operatorname{dn}^{2} u+k^{2} \operatorname{sn}^{2} u=1 \end{aligned}{\tag5} sn2u+cn2u=1dn2u+k2sn2u=1(5)

  三个雅各比椭圆函数在不同的模长 k k k下的图像如下

k=0

k=0.5

k=0.75
图2

可见,当 k = 0 k=0 k=0时, z = sn ⁡ ( u , k ) z=\operatorname{sn}(u,k) z=sn(u,k), z = cn ⁡ ( u , k ) z=\operatorname{cn}(u,k) z=cn(u,k) z = dn ⁡ ( u , k ) z=\operatorname{dn}(u,k) z=dn(u,k)分别变为 z = sin ⁡ u z=\operatorname{sin}u z=sinu, z = cos ⁡ u z=\operatorname{cos}u z=cosu z = 1 z=1 z=1
  函数图像与第一类完全椭圆积分K(k)的一般关系如图3所示。

图3

参考文献
理论力学 马尔契夫

  • 7
    点赞
  • 23
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值