防止模型过拟合的标签平滑技术

本文详细解析了Softmax交叉熵损失的数学公式及其在三分类问题中的应用实例。通过计算预测概率分布与真实分布之间的差距,展示了如何利用此损失函数优化模型。同时,讨论了该方法可能引发的过拟合问题,并介绍了标签平滑技术作为解决方案。
摘要由CSDN通过智能技术生成

1.softmax交叉熵损失的数学公式

设存在一个三分类问题,样本经模型最后的FC层的输出向量(即logits)为

则3个类别的预测概率依次为
假设样本的概率分布为
此时,交叉熵损失函数为

2.softmax交叉熵损失的计算实例

import numpy as np

def softmax(x)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值