cubic convolution interpolation (三次卷积插值)

本文详细介绍了立方卷积插值法的基本原理及其实现过程,包括一维与二维情形下的插值核定义、边界条件处理等关键技术点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法来源:Cubic convolution interpolation for digital image processing

文章只对一维情形进行分析,二维类似。

许多插值函数能够写成形式(其中是插值点,u是基函数(文章中叫插值核),h是采样间隔,是参数)

通过插值,用来近似

cubic convolution interpolation 中插值核u定义为子区间(-2,-1),(-1,0),(0,1),(1,2)上的分块三次多项式,并且在(-2,2)外为0。插值核必须是对称的(我也不知为啥),这就意味着,u有如下形式:

插值核必须有(这是基函数定义吧,为了方便计算,如果不这么定义的话,cj计算就比较麻烦)。因此有

因此,u必须满足:u(0)=1,u(1) = u(2)=0,且连续,即满足以下方程:

更进一步假设u'连续,得:

这里有七个方程,但是有八个未知量,所以至少有一个自由变量。[1]中采用

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值