粒子滤波(Particle filter)matlab实现

本文详细介绍了粒子滤波的基本原理,包括贝叶斯推理、重要性采样和Monte Carlo思想。通过一个状态方程和观测方程的例子,阐述了粒子滤波在预测和校正阶段的工作流程,并探讨了初始状态的处理。具体到MATLAB实现,文章展示了从目标特征提取到重采样阶段的完整过程,实现了动态目标跟踪。
摘要由CSDN通过智能技术生成

粒子滤波是以贝叶斯推理和重要性采样为基本框架的。因此,想要掌握粒子滤波,对于上述两个基本内容必须有一个初步的了解。贝叶斯公式非常perfect,但是在实际问题中,由于变量维数很高,被积函数很难积分,常常会给粒子滤波带来很大的麻烦。为了克服这个问题,它引入了重要性采样。即先设计一个重要性密度,根据重要性密度与实际分布之间的关系,给采样得到的粒子分配权重。再利用时变贝叶斯公式,给出粒子权重的更新公式及重要性密度的演变形式。在实际问题中,由于直接从重要性密度中采样非常困难,因此做出了妥协,重要性密度选为状态转移分布,随之可得权值更新遵循的规律与量测方程有关。


       粒子滤波算法源于Monte carlo思想,即以某事件出现的频率来指代该事件的概率。因此在滤波过程中,需要用到概率如P(x)的地方,一概对变量x采样,以大量采样及其相应的权值来近似表示P(x)。因此,采用此思想,在滤波过程中粒子滤波可以处理任意形式的概率,而不像Kalman滤波只能处理线性高斯分布的概率问题。粒子滤波的一大优势也在于此。

         下来看看对任意如下的状态方程:

                                  x(t)=f(x(t-1),u(t),w(t))

                                  y(t)=h(x(t),e(t))

其中的x(t)为t时刻状态,u(t)为控制量,w(t) 和e(t)分别为状态噪声和观测噪声。前一个方程描述是状态转移,后一个是观测方程。对于这么一个问题粒子滤波怎么来从观测y(t),和x(t-1),u(t) 滤出真实状态x(t)呢?

        预测阶段:粒子滤波首先根据x(t-1) 的概率分布生成大量的采样,这些采样就称之为粒子。那么这些采样在状态空间中的分布实际上就是x(t-1) 的概率分布了。好,接下来

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值