粒子滤波算法——基本原理(附MATLAB程序)

      粒子滤波(Particle Filter, PF),又称为序贯蒙特卡罗方法,是一种用于非线性、非高斯动态系统的状态估计方法。粒子滤波通过对状态空间进行离散化,并使用随机采样的方式来估计系统的状态。与扩展卡尔曼滤波(EKF)不同,粒子滤波不需要对系统模型进行线性化,这使得它在处理高度非线性问题时表现出色。

1. 基本概念

         粒子滤波基于贝叶斯滤波框架,采用随机采样的方法来估计状态概率分布。它通过一组称为“粒子”的样本来表示系统的状态,并用这些粒子来估计系统的状态分布。

2. 算法步骤

       粒子滤波的主要步骤包括:

2.1 初始化

       首先,生成一组粒子来表示初始状态的概率分布。这些粒子可以根据初始状态的先验知识进行随机采样。

    初始化粒子:

        其中,x^{}{_{0}^{\left ( i \right )}}是第 i个粒子的初始状态,N是粒子的总数。

2.2 预测步骤

       在每个时间步,使用系统的状态转移模型对每个粒子进行预测更新。粒子的预测更新通常依据控制输入和状态转移模型的随机性进行。

      粒子预测:

       其中, 是状态转移模型,是控制输入。

2.3 更新步骤

     根据观测数据对每个粒子的权重进行更新。权重反映了粒子与观测数据的匹配程度。

    计算粒子权重

        其中,是第 i个粒子的权重,是观测模型。

2.4 重采样

        为了避免“粒子退化”问题(即大部分粒子的权重接近零),需要对粒子进行重采样。重采样的目标是从当前粒子中选择出具有高权重的粒子,从而集中表示状态分布。

重采样步骤: 根据粒子的权重对粒子进行抽样,生成新的粒子集。

常见的重采样方法包括:

  • 系统重采样
  • 段式重采样
  • 低方差重采样
2.5 估计

       根据粒子的权重和状态来估计系统的状态。常见的状态估计方法包括粒子的加权平均。

       状态估计:

3. 优点与缺点

3.1 优点
  •  处理非线性和非高斯问题: 粒子滤波能够处理高度非线性和非高斯的动态系统。
  •  灵活性: 可以应用于各种复杂的状态转移和观测模型,而不需要线性化。
  •  适应性: 可以处理状态和观测维度较高的问题
3.2 缺点
  •  计算复杂性: 粒子滤波的计算量随着粒子数的增加而增加,尤其是在高维状态空间中。
  •  样本退化: 粒子滤波可能会遇到粒子退化问题,即大部分粒子的权重非常小,导致样本不足。

4. 应用

粒子滤波广泛应用于多种领域,如:

  • 机器人导航和定位(如SLAM)
  • 目标跟踪(如视频跟踪)
  • 金融数据分析(如风险评估)
  • 信号处理(如噪声过滤)

5.MATLAB仿真程序

1. 设置系统模型

% 系统参数
n_particles = 100; % 粒子数量
n_steps = 50; % 仿真步数
process_noise_std = 0.1; % 过程噪声标准差
measurement_noise_std = 1; % 观测噪声标准差

% 状态转移矩阵和观测矩阵
A = 1; % 状态转移矩阵
H = 1; % 观测矩阵

% 初始化粒子
particles = zeros(n_particles, 1); % 粒子状态
weights = ones(n_particles, 1) / n_particles; % 粒子权重

% 初始化真实状态和观测数据
true_state = zeros(n_steps, 1);
measurements = zeros(n_steps, 1);

% 生成真实状态和观测数据
true_state(1) = 0; % 初始真实状态
for t = 2:n_steps
    true_state(t) = A * true_state(t-1) + process_noise_std * randn;
end

measurements = H * true_state + measurement_noise_std * randn(n_steps, 1);

2. 粒子滤波器实现

% 记录估计状态
estimated_state = zeros(n_steps, 1);

for t = 1:n_steps
    % 粒子预测步骤
    particles = A * particles + process_noise_std * randn(n_particles, 1);

    % 计算粒子权重
    measurement_residuals = measurements(t) - particles;
    weights = exp(-0.5 * (measurement_residuals / measurement_noise_std).^2);
    weights = weights / sum(weights); % 归一化权重

    % 估计状态
    estimated_state(t) = sum(weights .* particles);

    % 重采样
    cumulative_sum = cumsum(weights);
    resampled_indices = find(cumulative_sum >= rand(n_particles, 1));
    resampled_indices = resampled_indices(1:n_particles);
    particles = particles(resampled_indices);
    weights = ones(n_particles, 1) / n_particles; % 重采样后权重均等
end

3. 绘制结果

% 绘制真实状态、观测数据和估计状态
figure;
plot(true_state, 'g', 'DisplayName', 'True State');
hold on;
plot(measurements, 'r.', 'DisplayName', 'Measurements');
plot(estimated_state, 'b--', 'DisplayName', 'Estimated State');
xlabel('Time Step');
ylabel('State');
legend;
title('Particle Filter Simulation');

说明: 

  1. 系统模型

    • n_particles:粒子数量。
    • process_noise_std:过程噪声标准差。
    • measurement_noise_std:观测噪声标准差。
    • AH:状态转移矩阵和观测矩阵(在本示例中都是1)。
  2. 粒子滤波器实现

    • 预测步骤:通过状态转移矩阵和过程噪声更新粒子状态。
    • 更新步骤:根据观测数据计算粒子权重,并计算加权的状态估计。
    • 重采样:根据粒子权重进行重采样,以便保留权重较大的粒子。
  3. 结果绘制

    • 绘制真实状态、观测数据和粒子滤波的估计状态,以便比较滤波器的效果。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leon625

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值