数据分层之DWD

本文详细介绍了数据仓库设计中的DWD(Data Warehouse Detail)层,强调了明细层事实表的重要性。DWD层包含了可加性、半可加性和不可加性事实,分别举例说明了它们在交易订单记录、库存管理和人力资源系统中的应用。同时,区分了事务事实表、周期快照事实表和累积快照事实表三种不同类型的事实表,阐述了各自的特点和使用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 DWD是什么?

  • 属于最细粒度的明细层事实表
  • 明细层事实表的某些重要维度属性字段可以适当冗余

2 DWD中的信息有什么?

  • 有一些记录事实的数字,这些数字可以分为三种

(1) 可加性事实是指可以按照与事实表关联的任意维度进行汇总。
示例:交易订单记录表中的【用户ID】可以进行count|distinct count汇总

(2) 半可加性事实只能按照特定维度汇总,不能对所有维度汇总。
示例:库存可以按照地点和商品进行汇总,而按时间维度把一年中每个月的库存累加则毫无意义。
交易订单记录表中的【时间维度、地区维度】按照这类“自然属性”的维度进行统计,在主题层没有实际意义,而偏统计报表类计算更多在DM层进行汇总,或者在DWS层往往是以某个主题数据做核心,与其产生关系的其他主题数据作为度量值来进行统计汇总的。

(3) 完全不可加性
示例:转化率、比率型等事实。

分类

事务事实表
事务事实表用来描述业务过程,跟踪空间或时间上某点的度量事件,保存的是最原子的数据,也称为原子事实表。
示例:
	交易订单记录表、广告投放数据表,这类数据本身是一个业务过程。
周期快照事实表
周期快照事实表中的每行汇总了发生在某一标准周期, 如一天、 一周或一月的多个度量。 其粒度是周期性的时间段, 而不是单个事务。周期快照事实表通常包含许多数据的总计, 因为任何与事实表时间范围一致的记录都会被包含在内。

示例:
	一个月|一周的销售订单周期快照, 用于按产品统计每个月总的销售订单金额和产品销售数量

另外周期快照在库存管理和人力资源系统中有比较广泛的应用
1 零售商希望通过产品和商店分析每天保有商品的库存水平,分析的业务过程是零售商店库存的每日周期快照。 
2 在人力资源管理系统中, 分析包括员工数量、支付的工资、假期天数、新增员工数量、离职员工数量,晋升人员数量等。 这时需要建立一个每月员工统计周期快照。
累积快照事实表
累积快照事实表用来表述过程开始和结束之间的关键步骤事件,覆盖过程的整个生命周期,通常具有多个日期字段来记录关键时间点。当累积快照事实表随着生命周期不断变化时,记录也会随着过程的变化而被修改。

具体实现方式:拉链表形式表达事实数据的变化过程或称历史轨迹
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

鸭梨山大哎

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值