Image Morphology(图像形态学)

一、前言

  在图像处理过程中,我们常常需要将自己感兴趣的区域与背景分离处理出来;图像二值化是一种简单有效的操作,一般选择合适的阈值就可以很好的将感兴趣区域提取出来,但是,实际情况并不是自己所期望的那样,总会出现一些其他的噪声,如下图所示:


  图中,一个向右倾的男人是我们感兴趣的区域,通过阈值操作后,被突出显示,然而,图片中除了男人,还有其他散布在图片中白噪声。可能原因如下:
  1. 阈值选择不合适。
  2. 原始输入图像本身存在噪声或其他形式的像差。
  我们如何消除二值化图像的这些白点?为什么要用形态学操作?我们先来看一个直观的效果,下图是上面二值化图片经过形态学处理过的效果图:

  

  从上图可以看出,大部分不希望的白色像素块消失了。与阈值操作相似,形态学操作是指一系列技术,也就是整个图像处理操作中的一个部分。看完这个简单的实验,我相信大家对形态学操作有了直观的感受,下面就开始具体介绍形态学操作。

二、形态学基本操作

膨胀与腐蚀(Erosion and dilation)

  基本的形态学操作是膨胀与腐蚀,它们能实现多种多样功能,如下:
  - 图像预处理(消除噪声、形状简化)
  - 图像增强(骨架提取、细化、凸包及物体标记)
  - 物体背景分割及物体形态量化

  我们可能都熟悉图像滤波操作:源图像与核进行卷积;相似地是,膨胀和腐蚀操作也是将源图像(记为A)与核(记为B)进行卷积,只是核定义的功能不一样。在这里,核可以是任何形状和大小,并且可以自己定义核的参考点,也就是锚点(anchorpoint).

  1.对于膨胀,在OpenCV中,是求局部极大值。即核B与图像A卷积:计算核B覆盖区域像素点的最大值,并将这个最大值赋給核的参考点(锚点)。这样会使图像中高亮区域逐渐扩大,有种膨胀的效果如下图所示(A为高亮区域,B为核,五角星为核B的参考点):


  膨胀中核的参考点灰度值计算公式:

这里写图片描述

  在OpenCV中,直接调用dilate()函数,如下所示:

void cv::dilate(
cv::InputArray src,                     // 输入图像
cv::OutputArray dst,                    // 输出图像
cv::InputArray element,                 // 结构元素(即核),默认为参考点位于中心3*3的核
cv::Point anchor = cv::Point(-1,-1),    // 锚点的位置,默认是结构元素中心
int iterations = 1,                     // 迭代的次数
int borderType = cv::BORDER_CONSTANT    // Border extrapolation
const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
); 

  2.对于腐蚀,在OpenCV中,是求局部最小值。即核B与图像A卷积:计算核B覆盖区域像素点的最小值,并将这个最小值赋給核的参考点(锚点)。这样会使图像中高亮区域逐渐缩小,有种腐蚀的效果,如下图所示(A为高亮区域,B为核,五角星为核B的参考点):


  腐蚀中核的参考点灰度值计算公式:

这里写图片描述

  在OpenCV中,直接调用erode()函数,如下所示:

void cv::erode(
cv::InputArray src,                     // 输入图像
cv::OutputArray dst,                    // 输出图像
cv::InputArray element,                 // 结构元素(即核),默认为参考点位于中心3*3的核
cv::Point anchor = cv::Point(-1,-1),    // 锚点的位置,默认是结构元素中心
int iterations = 1,                     // 迭代的次数
int borderType = cv::BORDER_CONSTANT    // Border extrapolation
const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
);   

  以上就是对形态学操作中膨胀与腐蚀的介绍,其中对于结构元素(即核)可以自己定义形状、大小及参考点的位置,在Opencv中一般使用getStructuringElement()来自定义结构元素:

cv::Mat cv::getStructuringElement(
int shape,                          // Element shape, e.g., cv::MORPH_RECT
cv::Size ksize,                     // Size of structuring element (odd num!)
cv::Point anchor = cv::Point(-1,-1) // Location of anchor point
);

  其中,结构元素的shape有:cv::MORPH_RECT、cv::MORPH_ELLIPSE 、cv::MORPH_CROSS;对于不同的形状,锚点的位置默认在中心,注意:十字形的element唯一依赖于锚点的位置,而对于其他形状,锚点只是影响了形态学运算结果的偏移。

三、形态学高级操作

开运算(OPEN)、闭运算(close)、形态学梯度(Morphological Gradient)、顶帽(TopHat)、黑帽(Black)

  本质:对膨胀、腐蚀操作的组合处理过程。

1、 开运算
  这是一个先腐蚀后膨胀的过程;该操作常用于去除图像中的噪声及平滑目标边界。其数学表达式如下:

open(src) = dilate(erode(src))

  OpenCV中提供了morphologyEX函数用于形态学开闭运算操作,其函数如下:

void cv::morphologyEx(
cv::InputArray src,         // 输入图像
cv::OutputArray dst,        // 输出图像
int op,                     // 形态学操作类型(e.g. cv::MOP_OPEN、cv::MOP_CLOSE...)
cv::InputArray element,     // 结构元素(即核),默认为参考点位于中心3*3的核
cv::Point anchor = cv::Point(-1,-1), // 锚点的位置,默认是结构元素中心
int iterations = 1,         // 迭代的次数
int borderType = cv::BORDER_DEFAULT // Border extrapolation
const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
);

   其中,对于操作类型,有如下几种:



开运算处理(左边原图,右边效果图)

2、 闭运算
  这是一个先膨胀后腐蚀的过程;该操作能够排除小型黑洞(黑色区域),消除低于领近点的孤立点,达到去燥的作用,可以平滑物体轮廓,弥合较窄的间断核细长的沟壑,消除小孔洞,填补轮廓线中的断裂。其数学表达式如下:
close(src) = erode(dilate(src))

  在OpenCV中只需将morphologyEX函数中的操作类型改为cv::MOP_CLOSE。


闭运算处理(左边原图,右边效果图)

3、 形态学梯度
  这是一个将膨胀图与腐蚀图相减的过程,突出高亮部分的边界。其数学表达式如下:

gradient(src)= dilate(src) – erode(src)

  在OpenCV中只需将morphologyEX函数中的操作类型改为cv::MOP_GRADIENT。


形态学梯度处理(左边原图,右边效果图)

4、 顶帽
  这是一个将原图像与开运算效果图相减的过程,具有高通滤波器的部分特性,可实现在图像中检测出周围背景亮结构或周边背景暗结构,常用于检测图像中的峰结构。其数学表达式为:

TopHat(src)= src – open(src)

  在OpenCV中只需将morphologyEX函数中的操作类型改为cv::MOP_TOPHAT。


顶帽处理(左边原图,右边效果图)

5、 黑帽
  这是一个将闭运算效果图与原图像相减的过程,突出了比原图轮廓周围更暗的区域。其数学表达式为:

BlackHat(src)= close(src)- src

  在OpenCV中只需将morphologyEX函数中的操作类型改为MOP_BLACKHAT。


黑帽处理(左边原图,右边效果图)

四、实战演练

1.膨胀腐蚀操作

// 功能:代码 6-1 腐蚀膨胀操作
// 作者:朱伟 zhu1988wei@163.com
// 来源:《OpenCV图像处理编程实例》
// 博客:http://blog.csdn.net/zhuwei1988
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
int main()
{
    cv::Mat srcImage = cv::imread("./images/test.jpg");
    if (!srcImage.data)
        return 1;
    cv::Mat srcGray;
    cvtColor(srcImage, srcGray, CV_RGB2GRAY);
    cv::Mat segDst, dilDst, eroDst;
    // 分通道二值化
    cv::inRange(srcGray, cv::Scalar(0, 0, 100),
        cv::Scalar(40, 30, 255), segDst);
    // 定义结构元素
    cv::Mat element = cv::getStructuringElement(
        cv::MORPH_ELLIPSE, cv::Size(5, 5));
    // 腐蚀膨胀操作
    cv::dilate(segDst, dilDst, element);
    cv::erode(segDst, eroDst, element);
    cv::imshow(" srcGray ", srcGray);
    cv::imshow(" segDst ", segDst);
    cv::imshow(" dilDst ", dilDst);
    cv::imshow(" eroDst ", eroDst);
    cv::waitKey();
    return 0;
}

腐蚀膨胀效果展示

2.开闭运算操作

// 功能:代码 6-2 形态学开闭操作
// 作者:朱伟 zhu1988wei@163.com
// 来源:《OpenCV图像处理编程实例》
// 博客:http://blog.csdn.net/zhuwei1988
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
int main()
{
    cv::Mat srcImage = cv::imread("..\\images\\test.jpg");
    if (!srcImage.data)
        return 1;
    cv::Mat srcGray, segImage;
    cv::cvtColor(srcImage, srcGray, CV_RGB2GRAY);
    // 阈值化
    cv::threshold(srcGray, segImage,
        255 * (0.5), 255, cv::THRESH_BINARY);
    // 定义结构元素
    cv::Mat element = cv::getStructuringElement(
        cv::MORPH_ELLIPSE, cv::Size(20, 20));
    // 形态学闭操作
    cv::Mat closedMat;
    cv::morphologyEx(segImage, closedMat, 
        cv::MORPH_CLOSE, element);
    // 形态学开操作 
    cv::Mat openedMat;
    cv::morphologyEx(segImage, openedMat,
     cv::MORPH_OPEN, element);
    cv::imshow(" srcGray ", srcGray);
    cv::imshow(" segImage ", segImage);
    cv::imshow(" closedMat ", closedMat);
    cv::imshow(" openedMat ", openedMat);
    cv::waitKey();
    return 0;
}

开闭运算效果展示

参考书籍:
Learing OpenCV3 作者 : Gary Bradski
OpenCV图像处理编程实例 作者 : 朱伟
OpenCV3编程入门 作者 : 毛星云

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值