一、前言
在图像处理过程中,我们常常需要将自己感兴趣的区域与背景分离处理出来;图像二值化是一种简单有效的操作,一般选择合适的阈值就可以很好的将感兴趣区域提取出来,但是,实际情况并不是自己所期望的那样,总会出现一些其他的噪声,如下图所示:
图中,一个向右倾的男人是我们感兴趣的区域,通过阈值操作后,被突出显示,然而,图片中除了男人,还有其他散布在图片中白噪声。可能原因如下:
1. 阈值选择不合适。
2. 原始输入图像本身存在噪声或其他形式的像差。
我们如何消除二值化图像的这些白点?为什么要用形态学操作?我们先来看一个直观的效果,下图是上面二值化图片经过形态学处理过的效果图:
从上图可以看出,大部分不希望的白色像素块消失了。与阈值操作相似,形态学操作是指一系列技术,也就是整个图像处理操作中的一个部分。看完这个简单的实验,我相信大家对形态学操作有了直观的感受,下面就开始具体介绍形态学操作。
二、形态学基本操作
膨胀与腐蚀(Erosion and dilation)
基本的形态学操作是膨胀与腐蚀,它们能实现多种多样功能,如下:
- 图像预处理(消除噪声、形状简化)
- 图像增强(骨架提取、细化、凸包及物体标记)
- 物体背景分割及物体形态量化
我们可能都熟悉图像滤波操作:源图像与核进行卷积;相似地是,膨胀和腐蚀操作也是将源图像(记为A)与核(记为B)进行卷积,只是核定义的功能不一样。在这里,核可以是任何形状和大小,并且可以自己定义核的参考点,也就是锚点(anchorpoint).
1.对于膨胀,在OpenCV中,是求局部极大值。即核B与图像A卷积:计算核B覆盖区域像素点的最大值,并将这个最大值赋給核的参考点(锚点)。这样会使图像中高亮区域逐渐扩大,有种膨胀的效果如下图所示(A为高亮区域,B为核,五角星为核B的参考点):
膨胀中核的参考点灰度值计算公式:
在OpenCV中,直接调用dilate()函数,如下所示:
void cv::dilate(
cv::InputArray src, // 输入图像
cv::OutputArray dst, // 输出图像
cv::InputArray element, // 结构元素(即核),默认为参考点位于中心3*3的核
cv::Point anchor = cv::Point(-1,-1), // 锚点的位置,默认是结构元素中心
int iterations = 1, // 迭代的次数
int borderType = cv::BORDER_CONSTANT // Border extrapolation
const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
);
2.对于腐蚀,在OpenCV中,是求局部最小值。即核B与图像A卷积:计算核B覆盖区域像素点的最小值,并将这个最小值赋給核的参考点(锚点)。这样会使图像中高亮区域逐渐缩小,有种腐蚀的效果,如下图所示(A为高亮区域,B为核,五角星为核B的参考点):
腐蚀中核的参考点灰度值计算公式:
在OpenCV中,直接调用erode()函数,如下所示:
void cv::erode(
cv::InputArray src, // 输入图像
cv::OutputArray dst, // 输出图像
cv::InputArray element, // 结构元素(即核),默认为参考点位于中心3*3的核
cv::Point anchor = cv::Point(-1,-1), // 锚点的位置,默认是结构元素中心
int iterations = 1, // 迭代的次数
int borderType = cv::BORDER_CONSTANT // Border extrapolation
const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
);
以上就是对形态学操作中膨胀与腐蚀的介绍,其中对于结构元素(即核)可以自己定义形状、大小及参考点的位置,在Opencv中一般使用getStructuringElement()来自定义结构元素:
cv::Mat cv::getStructuringElement(
int shape, // Element shape, e.g., cv::MORPH_RECT
cv::Size ksize, // Size of structuring element (odd num!)
cv::Point anchor = cv::Point(-1,-1) // Location of anchor point
);
其中,结构元素的shape有:cv::MORPH_RECT、cv::MORPH_ELLIPSE 、cv::MORPH_CROSS;对于不同的形状,锚点的位置默认在中心,注意:十字形的element唯一依赖于锚点的位置,而对于其他形状,锚点只是影响了形态学运算结果的偏移。
三、形态学高级操作
开运算(OPEN)、闭运算(close)、形态学梯度(Morphological Gradient)、顶帽(TopHat)、黑帽(Black)
本质:对膨胀、腐蚀操作的组合处理过程。
1、 开运算
这是一个先腐蚀后膨胀的过程;该操作常用于去除图像中的噪声及平滑目标边界。其数学表达式如下:
OpenCV中提供了morphologyEX函数用于形态学开闭运算操作,其函数如下:
void cv::morphologyEx(
cv::InputArray src, // 输入图像
cv::OutputArray dst, // 输出图像
int op, // 形态学操作类型(e.g. cv::MOP_OPEN、cv::MOP_CLOSE...)
cv::InputArray element, // 结构元素(即核),默认为参考点位于中心3*3的核
cv::Point anchor = cv::Point(-1,-1), // 锚点的位置,默认是结构元素中心
int iterations = 1, // 迭代的次数
int borderType = cv::BORDER_DEFAULT // Border extrapolation
const cv::Scalar& borderValue = cv::morphologyDefaultBorderValue()
);
其中,对于操作类型,有如下几种:
2、 闭运算
这是一个先膨胀后腐蚀的过程;该操作能够排除小型黑洞(黑色区域),消除低于领近点的孤立点,达到去燥的作用,可以平滑物体轮廓,弥合较窄的间断核细长的沟壑,消除小孔洞,填补轮廓线中的断裂。其数学表达式如下:
在OpenCV中只需将morphologyEX函数中的操作类型改为cv::MOP_CLOSE。
3、 形态学梯度
这是一个将膨胀图与腐蚀图相减的过程,突出高亮部分的边界。其数学表达式如下:
在OpenCV中只需将morphologyEX函数中的操作类型改为cv::MOP_GRADIENT。
4、 顶帽
这是一个将原图像与开运算效果图相减的过程,具有高通滤波器的部分特性,可实现在图像中检测出周围背景亮结构或周边背景暗结构,常用于检测图像中的峰结构。其数学表达式为:
在OpenCV中只需将morphologyEX函数中的操作类型改为cv::MOP_TOPHAT。
5、 黑帽
这是一个将闭运算效果图与原图像相减的过程,突出了比原图轮廓周围更暗的区域。其数学表达式为:
在OpenCV中只需将morphologyEX函数中的操作类型改为MOP_BLACKHAT。
四、实战演练
1.膨胀腐蚀操作
// 功能:代码 6-1 腐蚀膨胀操作
// 作者:朱伟 zhu1988wei@163.com
// 来源:《OpenCV图像处理编程实例》
// 博客:http://blog.csdn.net/zhuwei1988
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
int main()
{
cv::Mat srcImage = cv::imread("./images/test.jpg");
if (!srcImage.data)
return 1;
cv::Mat srcGray;
cvtColor(srcImage, srcGray, CV_RGB2GRAY);
cv::Mat segDst, dilDst, eroDst;
// 分通道二值化
cv::inRange(srcGray, cv::Scalar(0, 0, 100),
cv::Scalar(40, 30, 255), segDst);
// 定义结构元素
cv::Mat element = cv::getStructuringElement(
cv::MORPH_ELLIPSE, cv::Size(5, 5));
// 腐蚀膨胀操作
cv::dilate(segDst, dilDst, element);
cv::erode(segDst, eroDst, element);
cv::imshow(" srcGray ", srcGray);
cv::imshow(" segDst ", segDst);
cv::imshow(" dilDst ", dilDst);
cv::imshow(" eroDst ", eroDst);
cv::waitKey();
return 0;
}
腐蚀膨胀效果展示
2.开闭运算操作
// 功能:代码 6-2 形态学开闭操作
// 作者:朱伟 zhu1988wei@163.com
// 来源:《OpenCV图像处理编程实例》
// 博客:http://blog.csdn.net/zhuwei1988
#include <opencv2/core/core.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/imgproc/imgproc.hpp>
#include <iostream>
int main()
{
cv::Mat srcImage = cv::imread("..\\images\\test.jpg");
if (!srcImage.data)
return 1;
cv::Mat srcGray, segImage;
cv::cvtColor(srcImage, srcGray, CV_RGB2GRAY);
// 阈值化
cv::threshold(srcGray, segImage,
255 * (0.5), 255, cv::THRESH_BINARY);
// 定义结构元素
cv::Mat element = cv::getStructuringElement(
cv::MORPH_ELLIPSE, cv::Size(20, 20));
// 形态学闭操作
cv::Mat closedMat;
cv::morphologyEx(segImage, closedMat,
cv::MORPH_CLOSE, element);
// 形态学开操作
cv::Mat openedMat;
cv::morphologyEx(segImage, openedMat,
cv::MORPH_OPEN, element);
cv::imshow(" srcGray ", srcGray);
cv::imshow(" segImage ", segImage);
cv::imshow(" closedMat ", closedMat);
cv::imshow(" openedMat ", openedMat);
cv::waitKey();
return 0;
}
开闭运算效果展示
参考书籍:
Learing OpenCV3 作者 : Gary Bradski
OpenCV图像处理编程实例 作者 : 朱伟
OpenCV3编程入门 作者 : 毛星云