从傅里叶级数到傅里叶变换

引用自傅里叶系列(二)傅里叶变换的推导,在此基础上对一些细节重新整理了一下

1、先把傅里叶级数转为指数形式

三角函数形式:

f ( t ) = a 0 2 + ∑ n = 1 ∞ ( a n c o s ( n ω t ) + b n s i n ( n ω t ) ) ) a 0 = 2 T ∫ t 0 t 0 + T f ( t ) d t a n = 2 T ∫ t 0 t 0 + T f ( t ) c o s ( n ω t ) d t b n = 2 T ∫ t 0 t 0 + T f ( t ) s i n ( n ω t ) d t (1) \begin{aligned} f(t) &= \frac{a_0}{2}+\sum_{n=1}^{\infty}(a_n cos(n\omega t)+b_nsin(n \omega t)) \tag{1}) \\ a_0 & = \frac{2}{T}\int_{t_0}^{t_0+T}f(t)dt \\ a_n &= \frac{2}{T}\int_{t_0}^{t_0+T}f(t)cos(n\omega t)dt \\ b_n &= \frac{2}{T}\int_{t_0}^{t_0+T}f(t)sin(n\omega t)dt \\ \end{aligned} f(t)a0anbn=2a0+n=1(ancos(nωt)+bnsin(nωt)))=T2t0t0+Tf(t)dt=T2t0t0+Tf(t)cos(nωt)dt=T2t0t0+Tf(t)sin(nωt)dt(1)
上式中:
ω = 2 π T \omega=\frac{2\pi}{T} ω=T2π
式中, T T T为函数 f ( t ) f(t) f(t)的周期,往往是趋向于 + ∞ +\infty +的,因此 ω \omega ω则趋向于0,因为这样的关系,当函数 f ( t ) f(t) f(t)的周期越大时,傅里叶变换后的频率越密集。
欧拉公式:

e i θ = c o s ( θ ) + i s i n ( θ ) e − i θ = c o s ( θ ) − i s i n ( θ ) (2) \begin{aligned} e^{i\theta}=cos(\theta)+i sin(\theta) \\ e^{-i \theta}=cos(\theta)-i sin(\theta) \\ \tag{2} \end{aligned} eiθ=cos(θ)+isin(θ)eiθ=cos(θ)isin(θ)(2)
因此,可得
c o s ( θ ) = e i θ + e − i θ 2 s i n ( θ ) = − i ⋅ e i θ − e − i θ 2 (3) \begin{aligned} cos(\theta)&=\frac{e^{i\theta} + e^{-i\theta}}{2} \\ sin(\theta)&=-i\cdot\frac{e^{i\theta} - e^{-i\theta}}{2} \tag{3} \end{aligned} cos(θ)sin(θ)=2eiθ+eiθ=i2eiθeiθ(3)
s i n ( θ ) sin(\theta) sin(θ) c o s ( θ ) cos(\theta) cos(θ) 代入傅里叶级数求得:
f ( t ) = a 0 2 + ∑ n = 1 ∞ [ a n e i n ω t + e − i n ω t 2 − i ⋅ b n e i n ω t − e − i n ω t 2 ] = a 0 2 + ∑ n = 1 ∞ [ a n − i b n 2 e i n ω t + a n + i b n 2 e − i n ω t ] (4) \begin{aligned} f(t)&=\frac{a_0}{2}+ \sum_{n=1}^{\infty}[a_n \frac{e^{in\omega t}+e^{-in\omega t}}{2}-i\cdot b_n \frac{e^{in\omega t}-e^{-in\omega t}}{2}]\\ &=\frac{a_0}{2}+\sum_{n=1}^{\infty}[\frac{a_n-ib_n}{2}e^{in\omega t}+\frac{a_n+ib_n}{2}e^{-in\omega t}] \tag{4} \end{aligned} f(t)=2a0+n=1[an2einωt+einωtibn2einωteinωt]=2a0+n=1[2anibneinωt+2an+ibneinωt](4)

a 0 , a n , b n a_0,a_n,b_n a0,an,bn代入公式 4 {4} 4中,得到:
a n − i b n 2 = 1 T [ ∫ t 0 t 0 + T f ( t ) c o s ( n ω t ) d t − i ⋅ ∫ t 0 t 0 + T f ( t ) s i n ( n ω t ) d t ] = 1 T ∫ t 0 t 0 + T f ( t ) [ c o s ( n ω t ) d t − i ⋅ s i n ( n ω t ) ] d t = 1 T ∫ t 0 t 0 + T f ( t ) [ e i n ω t + e − i n ω t 2 − i ⋅ ( − i ) e i n ω t − e − i n ω t 2 ] d t = 1 T ∫ t 0 t 0 + T f ( t ) e − i n ω t d t (5) \begin{aligned} \frac{a_n-ib_n}{2}&=\frac{1}{T}[\int_{t_0}^{t_0+T}f(t)cos(n\omega t)dt-i\cdot\int_{t_0}^{t_0+T}f(t)sin(n\omega t)dt] \\ &=\frac{1}{T}\int_{t_0}^{t_0+T}f(t)[cos(n\omega t)dt-i\cdot sin(n\omega t)]dt \\ &=\frac{1}{T}\int_{t_0}^{t_0+T}f(t)[\frac{e^{in\omega t} + e^{-in\omega t}}{2}-i\cdot (-i)\frac{e^{in\omega t} - e^{-in\omega t}}{2}]dt \\ &=\frac{1}{T}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t} dt \tag{5} \end{aligned} 2anibn=T1[t0t0+Tf(t)cos(nωt)dtit0t0+Tf(t)sin(nωt)dt]=T1t0t0+Tf(t)[cos(nωt)dtisin(nωt)]dt=T1t0t0+Tf(t)[2einωt+einωti(i)2einωteinωt]dt=T1t0t0+Tf(t)einωtdt(5)
同理:
a n + i b n 2 = 1 T ∫ t 0 t 0 + T f ( t ) e i n ω t d t (6) \frac{a_n+ib_n}{2}=\frac{1}{T}\int_{t_0}^{t_0+T}f(t)e^{in\omega t} dt \tag{6} 2an+ibn=T1t0t0+Tf(t)einωtdt(6)

( 5 ) , ( 6 ) (5),(6) (5)6代入 ( 4 ) (4) (4)中,得到:

f ( t ) = 1 T ∫ t 0 t 0 + T f ( t ) d t + 1 T ∑ n = 1 ∞ [ ∫ t 0 t 0 + T f ( t ) e − i n ω t d t ⋅ e i n ω t + ∫ t 0 t 0 + T f ( t ) e i n ω t d t ⋅ e − i n ω t ] = 1 T ∫ t 0 t 0 + T f ( t ) d t + 1 T ∑ n = 1 ∞ ∫ t 0 t 0 + T f ( t ) e − i n ω t d t ⋅ e i n ω t + ∑ n = − ∞ − 1 1 T ∫ t 0 t 0 + T f ( t ) e − i n ω t d t ⋅ e i n ω t = 1 T ∑ n = − ∞ ∞ ∫ t 0 t 0 + T f ( t ) e − i n ω t d t ⋅ e i n ω t \begin{aligned} f(t)&=\frac{1}{T}\int_{t_0}^{t_0+T}f(t)dt +\frac{1}{T}\sum_{n=1}^{\infty}[\int_{t_0}^{t_0+T}f(t)e^{-in\omega t} dt\cdot e^{in\omega t}+\int_{t_0}^{t_0+T}f(t)e^{in\omega t} dt\cdot e^{-in\omega t}] \\ &=\frac{1}{T}\int_{t_0}^{t_0+T}f(t)dt +\frac{1}{T}\sum_{n=1}^{\infty}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t} dt\cdot e^{in\omega t}+\sum_{n=-\infty}^{-1}\frac{1}{T}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t} dt\cdot e^{in\omega t} \\ &=\frac{1}{T}\sum_{n=-\infty}^{\infty}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t} dt\cdot e^{in\omega t} \end{aligned} f(t)=T1t0t0+Tf(t)dt+T1n=1[t0t0+Tf(t)einωtdteinωt+t0t0+Tf(t)einωtdteinωt]=T1t0t0+Tf(t)dt+T1n=1t0t0+Tf(t)einωtdteinωt+n=1T1t0t0+Tf(t)einωtdteinωt=T1n=t0t0+Tf(t)einωtdteinωt
n = 0 n=0 n=0时:
1 T ∫ t 0 t 0 + T f ( t ) e − i n ω t d t ⋅ e i n ω t = 1 T ∫ t 0 t 0 + T f ( t ) d t (7) \frac{1}{T}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t} dt\cdot e^{in\omega t}=\frac{1}{T}\int_{t_0}^{t_0+T}f(t)dt \tag{7} T1t0t0+Tf(t)einωtdteinωt=T1t0t0+Tf(t)dt(7)

接下来是与原文不同的推导

f ( t ) = = 1 T ∑ n = − ∞ ∞ ∫ t 0 t 0 + T f ( t ) e − i n ω t d t ⋅ e i n ω t (8) \begin{aligned} f(t)&= &=\frac{1}{T}\sum_{n=-\infty}^{\infty}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t} dt\cdot e^{in\omega t} \\ \tag{8} \end{aligned} f(t)==T1n=t0t0+Tf(t)einωtdteinωt(8)
公式 8 8 8中,令
Ω = n ω F ( Ω ) = ∫ t 0 t 0 + T f ( t ) e − i Ω t d t \begin{aligned} \Omega&= n\omega\\ F(\Omega)&=\int_{t_0}^{t_0+T}f(t)e^{-i\Omega t} dt \\ \end{aligned} ΩF(Ω)=nω=t0t0+Tf(t)eiΩtdt
进一步对 F ( Ω ) F(\Omega) F(Ω)进行分析:

F ( Ω ) = ∫ t 0 t 0 + T f ( t ) e − i Ω t d t = ∫ t 0 t 0 + T f ( t ) e − i ω n t d t = ∫ t 0 t 0 + T f ( t ) [ c o s ( ω n t ) − i ⋅ s i n ( ω n t ) ] d t = ∫ t 0 t 0 + T f ( t ) c o s ( ω n t ) d t − i ⋅ ∫ t 0 t 0 + T f ( t ) s i n ( ω n t ) d t = T 2 ( a n − i ⋅ b n ) = 2 π ω ⋅ 1 2 ( a n − i ⋅ b n ) \begin{aligned} F(\Omega)&=\int_{t_0}^{t_0+T}f(t)e^{-i\Omega t} dt \\ &=\int_{t_0}^{t_0+T}f(t)e^{-i\omega nt} dt \\ &=\int_{t_0}^{t_0+T}f(t)[cos(\omega nt)-i\cdot sin(\omega nt)] dt \\ &=\int_{t_0}^{t_0+T}f(t)cos(\omega nt)dt-i\cdot \int_{t_0}^{t_0+T}f(t) sin(\omega nt) dt \\ &=\frac{T}{2}( a_n-i\cdot b_n) \\ &=\frac{2\pi}{\omega}\cdot \frac{1}{2}( a_n-i\cdot b_n) \end{aligned} F(Ω)=t0t0+Tf(t)eiΩtdt=t0t0+Tf(t)eiωntdt=t0t0+Tf(t)[cos(ωnt)isin(ωnt)]dt=t0t0+Tf(t)cos(ωnt)dtit0t0+Tf(t)sin(ωnt)dt=2Tanibn=ω2π21(anibn)

由此可以看出, F ( Ω ) F(\Omega) F(Ω)的实部是余弦函数的的幅度值,虚部是正弦函数的幅度值。

公式 8 8 8的说明,因为 ω \omega ω很小,而, n n n是从 − ∞ -\infty 取到 + ∞ +\infty +,因此 Ω ∈ [ − ∞ , + ∞ ] \Omega\in[-\infty,+\infty] Ω[,+]
( 8 ) (8) (8)变为:
f ( t ) = 1 T ∑ n = − ∞ ∞ ∫ t 0 t 0 + T f ( t ) e − i n ω t d t ⋅ e i n ω t = 1 T ∑ n = − ∞ ∞ F ( Ω ) ⋅ e i Ω t = 1 T ∫ − ∞ ∞ F ( Ω ) ⋅ e i Ω t d n = 1 T ω ∫ − ∞ ∞ F ( Ω ) ⋅ e i Ω t d ω n = 1 2 π ∫ − ∞ ∞ F ( Ω ) ⋅ e i Ω t d Ω (9) \begin{aligned} f(t)&=\frac{1}{T}\sum_{n=-\infty}^{\infty}\int_{t_0}^{t_0+T}f(t)e^{-in\omega t} dt\cdot e^{in\omega t} \\ &=\frac{1}{T}\sum_{n=-\infty}^{\infty}F(\Omega)\cdot e^{i\Omega t} \\ &=\frac{1}{T}\int_{-\infty}^{\infty} F(\Omega)\cdot e^{i\Omega t}dn \\ &=\frac{1}{T\omega}\int_{-\infty}^{\infty} F(\Omega)\cdot e^{i\Omega t}d\omega n \\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\Omega)\cdot e^{i\Omega t}d\Omega \\ \tag{9} \end{aligned} f(t)=T1n=t0t0+Tf(t)einωtdteinωt=T1n=F(Ω)eiΩt=T1F(Ω)eiΩtdn=Tω1F(Ω)eiΩtdωn=2π1F(Ω)eiΩtdΩ(9)

由此,可得傅里叶变换的公式为:

f ( t ) = 1 2 π ∫ − ∞ ∞ F ( Ω ) ⋅ e i Ω t d Ω F ( Ω ) = ∫ t 0 t 0 + T f ( t ) e − i Ω t d t (10) \begin{aligned} f(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\Omega)\cdot e^{i\Omega t}d\Omega \\ F(\Omega)&=\int_{t_0}^{t_0+T}f(t)e^{-i\Omega t} dt \\ \tag{10} \end{aligned} f(t)F(Ω)=2π1F(Ω)eiΩtdΩ=t0t0+Tf(t)eiΩtdt(10)

2、再把傅里叶的指数形式推导到离散傅里叶的形式

此部分的参考为离散傅里叶变换

在傅里叶变换的过程中,函数 f ( t ) f(t) f(t)往往是连续的并且周期T是无穷大的,但是自然界中,函数 f ( t ) f(t) f(t)一般是离散的,因此需要将傅里叶变换进行离散化。
f ( t ) f(t) f(t)是离散的,并且个数是 N N N,因此假设:
f ( 1 ) = A 1 f ( 2 ) = A 2 f ( 3 ) = A 3 f ( 4 ) = A 4 f ( 5 ) = A 5 ⋮ f ( N ) = A N \begin{aligned} f(1)&=A_ 1 \\ f(2)&=A_2 \\ f(3)&=A_3 \\ f(4)&=A_4 \\ f(5)&=A_5 \\ \vdots & \\ f(N)&=A_N \\ \end{aligned} f(1)f(2)f(3)f(4)f(5)f(N)=A1=A2=A3=A4=A5=AN
将公式 10 10 10进行离散化变形,得到
F ( Ω ) = ∫ t 0 t 0 + T f ( t ) e − i Ω t d t F ( 2 π T ⋅ n ) = ∫ t 0 t 0 + T f ( t ) e − i 2 π n t T d t G ( n ) = F ( 2 π T ⋅ n ) = ∑ t = 1 N f ( t ) e − i 2 π n t N (10) \begin{aligned} F(\Omega)&=\int_{t_0}^{t_0+T}f(t)e^{-i\Omega t} dt \\ F(\frac{2\pi}{T}\cdot n )&=\int_{t_0}^{t_0+T}f(t)e^{\frac{-i2\pi nt}{T}} dt \\ G(n)&=F(\frac{2\pi}{T}\cdot n) \\ &= \sum_{t=1}^{N}f(t)e^{\frac{-i2\pi nt}{N}} \tag{10} \end{aligned} F(Ω)F(T2πn)G(n)=t0t0+Tf(t)eiΩtdt=t0t0+Tf(t)eTi2πntdt=F(T2πn)=t=1Nf(t)eNi2πnt(10)
公式中的:
n < = N T = N ω = 2 π T Ω = 2 π T ⋅ n \begin{aligned} n&<= N\\ T&=N \\ \omega&=\frac{2\pi}{T} \\ \Omega&=\frac{2\pi}{T} \cdot n \\ \end{aligned} nTωΩ<=N=N=T2π=T2πn

f ( t ) = 1 2 π ∫ − ∞ ∞ F ( Ω ) ⋅ e i Ω t d Ω = 1 2 π ∫ − ∞ ∞ F ( Ω ) ⋅ e i 2 π T ⋅ n t d 2 π T ⋅ n = 1 2 π ∫ − ∞ ∞ F ( 2 π n T ) ⋅ e i 2 π N ⋅ n t d 2 π N ⋅ n = 1 2 π ⋅ 2 π N ∫ − ∞ ∞ G ( n ) ⋅ e i 2 π N ⋅ n t d n = 1 N ∑ n = 1 N G ( n ) ⋅ e i 2 π N ⋅ n t (10) \begin{aligned} f(t)&=\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\Omega)\cdot e^{i\Omega t}d\Omega \\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\Omega)\cdot e^{i \frac{2\pi}{T} \cdot n t}d\frac{2\pi}{T} \cdot n \\ &=\frac{1}{2\pi}\int_{-\infty}^{\infty} F(\frac{2\pi n}{T})\cdot e^{i \frac{2\pi}{N} \cdot n t}d\frac{2\pi}{N} \cdot n \\ &=\frac{1}{2\pi} \cdot \frac{2\pi}{N} \int_{-\infty}^{\infty} G(n)\cdot e^{i \frac{2\pi}{N} \cdot n t}d n \\ &= \frac{1}{N} \sum_{n=1}^{N} G(n)\cdot e^{i \frac{2\pi}{N} \cdot n t} \\ \tag{10} \end{aligned} f(t)=2π1F(Ω)eiΩtdΩ=2π1F(Ω)eiT2πntdT2πn=2π1F(T2πn)eiN2πntdN2πn=2π1N2πG(n)eiN2πntdn=N1n=1NG(n)eiN2πnt(10)
傅里叶变换后,结果是复数,其含义为:
傅氏变换后得到的复数,实部就代表该频率下的余弦信号分量,虚部就代表该频率下的正弦信号分量。
参考一维傅里叶变换后的复数怎样理解?
另一篇关于离散傅立叶变换的博客讲的很好
深入理解离散傅里叶变换(DFT)
快速傅里叶变换(FFT)算法【详解】

傅立叶变换中,为什么要引入复数

另一篇博客,从另一个角度阐述了傅立叶变换中的复数的含义
李泽光–傅立叶变换的复数理解

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值