二重积分坐标变化

在概率论的一道题目中遇到了二重积分需要坐标变换的问题,

需要求出上图中阴影部分的面积,虽然可以通过其他方式求出,但是解答中的二重积分形式显然更具备通用型。

 

化简式中 dxdy 转化成极坐标表达形式的时候变成了 rdr dΘ    这个过程我无法理解

 

在查询了相关资料之后确认我的疑问在于二重积分坐标变化的过程

 

拿出微积分的相关教材 我找了这个公式

(下面的公式源自二阶雅可比行列式, 等式右侧为行列式)

其中| ∂(x,y)/∂(u,v) | =  | x 对 u的偏导       x 对v 的偏导|

                                    | y  对 u的偏导     y 对v 的偏导|

 

直角坐标系转换成极坐标系的时候满足

x  = r cosΘ

y  = r sinΘ

 

| ∂(x,y)/∂(r,Θ) | = | cosΘ    -rsinΘ|

                           | sinΘ   rcosΘ |

                          = r

ps:

在看到这个公式的时候我对Θ r 的顺序存在了疑问,他们的顺序会影响最后的符号,目前 推测最后的积分顺序相关,我们选择先对r积分,然后对Θ积分,所以是这样的顺序,这一点目前还待验证 。(目前已确认,Θ r 存在关联关系,如果交换积分顺序,那么对应积分中的范围数值也应该相应调整)

要解决与双纽线相关的二重积分问题,可以采用以下几种方法: --- ### 方法一:利用极坐标系简化计算 双纽线通常由极坐标方程表示为$r^2 = a^2 \cos(2\theta)$或$r^2 = a^2 \sin(2\theta)$。因此,在处理涉及双纽线区域上的二重积分时,转换到极坐标系通常是最佳选择。 1. 设定被积函数$f(x, y)$,将其转化为极坐标形式$f(r\cos\theta, r\sin\theta)$。 2. 双纽线所围成的面积可以通过确定$\theta$的变化范围来定义。对于标准双纽线,$\theta$一般取值从$-\pi/4$到$\pi/4$或者类似的对称区间。 3. 积分表达式变为: $$ I = \int_{\text{角度下限}}^{\text{角度上限}} \int_0^{r(\theta)} f(r\cos\theta, r\sin\theta) \cdot r \, dr \, d\theta $$ --- ### 方法二:应用对称性减少计算复杂度 由于双纽线具有中心对称性质,可以在求解过程中充分利用这一特性。 1. 如果被积函数$f(x, y)$在整个区域内是对称的,则只需计算其中一个象限的结果并乘以适当的倍数(例如4)即可得到最终结果。 2. 这种方式能够显著降低计算难度和工作量。 --- ### 方法三:借助数值方法近似求解 当解析法难以实现时,可以考虑使用数值积分技术获得近似解。 1. 利用软件工具如MATLAB、Python等编写程序实现复合梯形法则或其他高阶数值积分算法。 2. 示例代码如下所示: ```python import numpy as np from scipy.integrate import dblquad # 定义被积函数 def integrand(r, theta): return r * (np.cos(theta)**2 + np.sin(theta)**2) # 极坐标的上下界 result, error = dblquad(integrand, -np.pi/4, np.pi/4, lambda t: 0, lambda t: np.sqrt(a**2 * np.cos(2*t))) print(f"Integral Result: {result}, Error Estimate: {error}") ``` --- ### 注意事项 - 在具体题目中需要明确给出双纽线的具体参数$a$及待求解的特定积分形式。 - 若遇到复杂的非齐次项或多变量情况,可能还需要引入其他高级技巧比如Green公式变换等。 ---
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值