数学分析(二十一)-重积分4-二重积分的变量变换2:用极坐标计算二重积分

当积分区域是圆域或圆域的一部分,或者被积函数的形式为 f ( x 2 + y 2 ) f\left(x^{2}+y^{2}\right) f(x2+y2) 时,采用极坐标变换

T : { x = r cos ⁡ θ , y = r sin ⁡ θ , 0 ⩽ r < + ∞ , 0 ⩽ θ ⩽ 2 π ( 8 ) T:\left\{\begin{array}{l} x=r \cos \theta, \\ y=r \sin \theta, \end{array} \quad 0 \leqslant r<+\infty, 0 \leqslant \theta \leqslant 2 \pi\right. \quad\quad(8) T:{ x=rcosθ,y=rsinθ,0r<+,0θ2π(8)

往往能达到简化积分区域或被积函数的目的. 此时,变换 T T T 的函数行列式为
J ( r , θ ) = ∣ cos ⁡ θ − r sin ⁡ θ sin ⁡ θ r cos ⁡ θ ∣ = r . J(r, \theta)=\left|\begin{array}{rr} \cos \theta & -r \sin \theta \\ \sin \theta & r \cos \theta \end{array}\right|=r . J(r,θ)= cosθsinθrsinθrcosθ =r.

在这里插入图片描述

容易知道,极坐标变换 T T T r θ r \theta rθ 平面上的矩形 [ 0 , R ] × [ 0 , 2 π ] [0, R] \times[0,2 \pi] [0,R]×[0,2π] 变换成 x y x y xy 平面上的圆域 D = { ( x , y ) ∣ x 2 + y 2 ⩽ R 2 } D=\left\{(x, y) \mid x^{2}+y^{2} \leqslant R^{2}\right\} D={ (x,y)x2+y2R2}.但对应不是一对一的. 例如, x y x y xy 平面上原点 O ( 0 , 0 ) O(0,0) O(0,0) r θ r \theta rθ平面上直线 r = 0 r=0 r=0 相对应, x x x 轴上线段 A A ′ A A^{\prime} AA 对应于 r θ r \theta rθ平面上两条线段 C D C D CD E F E F EF (图 21-24).又当 r = 0 r=0 r=0 时, J ( r , θ ) = 0 J(r, \theta)=0 J(r,θ)=0, 因此不满足定理 21.13 的条件. 但是,我们仍然有下面的结论.

定理 21.14

f ( x , y ) f(x, y) f(x,y) 满足定理 21.13 的条件, 且在极坐标变换 (8)下, x y x y xy 平面上有界闭区域 D D D r θ r \theta rθ 平面上区域 Δ \Delta Δ 对应,则成立

∬ D f ( x , y ) d x   d y = ∬ Δ f ( r cos ⁡ θ , r sin ⁡ θ ) r   d r   d θ . \iint_{D} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{\Delta} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta . Df(x,y)dx dy=Δf(rcosθ,rsinθ)r dr dθ.


D D D 为圆域 { ( x , y ) ∣ x 2 + y 2 ⩽ R 2 } \left\{(x, y) \mid x^{2}+y^{2} \leqslant R^{2}\right\} { (x,y)x2+y2R2}, 则 Δ \Delta Δ r θ r \theta rθ 平面上矩形区域 [ 0 , R ] × [ 0 , 2 π ] [0, R] \times[0,2 \pi] [0,R]×[0,2π].设 D e D_{\mathrm{e}} De为在圆环 { ( x , y ) ∣ 0 < ε 2 ⩽ x 2 + y 2 ⩽ R 2 } \left\{(x, y) \mid 0<\varepsilon^{2} \leqslant x^{2}+y^{2} \leqslant R^{2}\right\} { (x,y)0<ε2x2+y2R2}中除去中心角为 ε \varepsilon ε 的扇形 B B ′ A ′ A B B^{\prime} A^{\prime} A BBAA所得的区域 (图 21-24(a)), 则在变换 (8) 下, D ε D_{\varepsilon} Dε 对应于 r θ r \theta rθ 平面上的矩形区域 Δ ε = [ ε , R ] × \Delta_{\varepsilon}=[\varepsilon, R] \times Δε=[ε,R]× [ 0 , 2 π − ε ] [0,2 \pi-\varepsilon] [0,2πε](图 21-24(b)). 但极坐标变换 (8) 在 D ε D_{\varepsilon} Dε Δ ε \Delta_{\varepsilon} Δε 之间是一对一变换, 且在 Δ ε \Delta_{\varepsilon} Δε上函数行列式 J ( r , θ ) > 0 J(r, \theta)>0 J(r,θ)>0. 于是由定理 21.13 ,有

∬ D e f ( x , y ) d x   d y = ∬ Δ ε f ( r cos ⁡ θ , r sin ⁡ θ ) r   d r   d θ . \iint_{D_{e}} f(x, y) \mathrm{d} x \mathrm{~d} y=\iint_{\Delta_{\varepsilon}} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta . Def(x,y)dx dy=Δε

  • 15
    点赞
  • 22
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值