机器学习中的训练集、验证集和测试集

 在机器学习中我们把数据分为测试数据训练数据

测试数据就是测试集,是用来测试已经训练好的模型的泛化能力。

训练数据常被划分为训练集(training set)验证集(validation set),比如在K-折交叉验证中,整个训练数据集D,就被分为K个部分,每次挑选其中的(K-1)部分做训练集,剩下的部分为验证集。

训练集是用来训练模型或确定模型参数的,如ANN中权值,CNN中的权值等;验证集是用来做模型结构选择,确定模型中的一些超参数,比如正则项系数,CNN各个隐层神经元的个数等;

 以下是维基百科中的解释:

  • Training set: A set of examples used for learning, which is to fit the parameters [i.e., weights] of the classifier.

  • Validation set: A set of examples used to tune the parameters [i.e., architecture, not weights] of a classifier, for example to choose the number of hidden units in a neural network.

  • Test set: A set of examples used only to assess the performance [generalization] of a fully specified classifier.

已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页