大模型微调之早停(Early Stopping)

简介

1. 早停(Early Stopping)简介

早停是一种正则化技术,目的是在训练过程中避免模型过拟合。过拟合通常发生在模型在训练数据上表现很好,但在未见过的新数据上表现很差的情况。早停可以帮助我们在模型开始过拟合之前停止训练,从而提高模型的泛化能力。

2. 过拟合与验证集的作用

为了理解早停的必要性,首先需要明白 过拟合 是什么。在训练深度学习模型时,模型可能会逐渐“记住”训练集中的所有数据,而不是学到能够泛化的规律。这样,模型在训练集上的表现会越来越好,但在验证集和测试集上的表现可能会变得越来越差。

  • 训练集:用于训练模型的样本集。
  • 验证集:用于在训练过程中验证模型表现的数据集,通常用于调整超参数。
  • 测试集:用于评估最终模型的泛化能力的数据集。

在训练过程中,我们希望模型不仅在训练集上表现良好,也能在未见过的数据(验证集或测试集)上表现得同样好。这时,验证集的作用非常重要,它可以帮助我们检测是否过拟合。

### 大模型微调的基础流程 大模型微调涉及多个重要环节,从加载预训练模型到最终的应用部署。具体来说: #### 加载预训练大模型 为了启动微调过程,首先需要加载一个已经过大规模数据训练的大模型作为基础。这一步骤通常依赖于现有的框架和支持库,比如 PyTorch 或者 Hugging Face Transformers 库[^1]。 ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer model_name = "bert-base-uncased" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSequenceClassification.from_pretrained(model_name) ``` #### 修改输出层 接着是对模型的最后一层进行调整,使其适应特定的任务需求。对于分类任务而言,可能意味着改变全连接层的大小以匹配目标类别的数量;而对于回归任务,则可能是设置不同的激活函数等[^3]。 ```python num_labels = 2 # 假设是一个二分类问题 model.classifier = torch.nn.Linear(in_features=model.config.hidden_size, out_features=num_labels) ``` #### 准备微调数据集 构建高质量的数据集至关重要。该阶段包括收集、清洗以及标注用于进一步优化模型表现的真实世界样本。确保这些数据能够代表实际应用场景中的情况是非常重要的[^2]。 #### 微调训练 利用准备好的数据集对之前定制化的模型实施再训练。此过程中可以采用较小的学习率,并关注防止过拟合的技术手段如(Early Stopping),正则化(L2 regularization)等措施来提升泛化能力。 ```python optimizer = AdamW(model.parameters(), lr=5e-5) for epoch in range(num_epochs): model.train() for batch in train_dataloader: outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() optimizer.zero_grad() ``` #### 评估模型性能 完成初步训练之后,应当通过验证集或者测试集仔细检验改进后的效果。常用的评价指标有准确度(Accuracy), F1 Score, ROC-AUC曲线下的面积等等,视具体情况而定。 #### 模型部署应用 最后,在确认新版本达到了预期标准后就可以将其投入到生产环境中去了。此时还需考虑诸如推理速度、资源消耗等因素的影响,从而做出必要的优化处理。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾斯汀玛尔斯

愿我的经历曾为你指明方向

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值