龙哥Labview视觉Labview+YOLOv5教程

背景:

    2020 年 6 月 10 日YOLOv5发布。YOLOv5 的表现要优于谷歌开源的目标检测框架 EfficientDet,其在检测精度和速度上相比与yolov4都有较大的提高, YOLOv5 能在 Tesla P100 上实现 140 FPS 的快速检测;相较而言,YOLOv4 的基准结果是在 50 FPS 速度下得到的,也就是说,在实际项目应用中,YOLOV5速度已经接近yolov4的3倍。

    其主要特点是:1).小目标的检测精度上有明显的提高,2).能自适应锚框计算,3).yolov5s的模型十几M大小,速度很快,能满足各种实际生成的现场部署,甚至可以在嵌入式上进行部署,YOLOv5 的模型文件大小仅有 27 MB。对比一下:使用 darknet 架构的 YOLOv4 有 244 MB。这说明 YOLOv5 实在特别小,比 YOLOv4 小近 90%,而在准确度指标上,YOLOv5 与 YOLOv4 相当。4).具有数据增强功能,随机缩放,裁剪,拼接等功能。

图片

总结起来,YOLOv5 速度非常快,有非常轻量级的模型大小,同时在准确度方面也比较高,属于各方面都比较优秀的目标检测模型。

图片

课程简介

 《龙哥手把手教你学视觉》系列课程一直是发烧友学院的LabVIEW视觉系列王牌课程,也是labview视觉工程师入门提高必学经典全集,自上线以来,购买人数超过2000余人。

    《龙哥手把手教你学视觉》系列课程分为4个篇章:视觉篇,运动篇,双ccd与通用视觉框架篇,深度学习篇。课程涵盖labview视觉编程入门到精通的全系列知识:数据类型,程序结构,数据通讯,视觉助手,模板匹配,尺寸测量,外观检测,工业案例,运动控制卡编程,对中,9点标定,双mark仿射变换,点胶锁螺丝应用,通用视觉框架(免编程),labview调用tensorflow训练,一键训练,测试模型,导出模型,调用模型,openvino优化加速模型,labview调用yolov4训练,调用模型,等labview视觉编程设计从零基础开始的全过程。

    

根据工业视觉外观检测的速度和准确性要求,龙哥视觉结合labview编程平台推出了labview+yolov5训练和模型步数的课程,希望学员学习后能在实际工业项目中落地应用。

本次课程将重点讲解《YOLOv5》篇,让没有任何深度学习基础的小白学员,通过视频课程能动手配置好yolov5环境,能利用自己的数据集训练模型,能利用labview部署yolov5导出的模型,能利用摄像头动态检测输出目标检测结果。

    

为什么要学习

有些labview视觉工程师并不缺少labview视觉的相关知识,可是为什么有些外观缺陷检测项目总是达不到理想的效果呢?要么漏检率太高,要么就误判率太高,归根到底,我们缺少一种利用高纬度数学工具来解决低维检测问题的理想工具,这时候就体现了方法的重要性。

Yolov5所采用的训练集提供的类别有80 类,有超过33 万张图片,其中20 万张有标注,整个数据集中个体的数目超过150 万个,其目标检测精度达到30%-50%(tensorflow中的ssd约为20%),足以说明该模型的分类检测能力很强。

将yolov5应用于工业外观检测将具有极大的前景,例如下图这种复杂背景下的缺陷检测也可以实现理想的检测效果。

在本套视频,有别于常见的深度学习教程以理论为主进行全面讲解,以没有任何深度学习理论基础的学员学习角度,以实际应用为目标,讲解如何设计一个完整的yolov5工业外观检测,手把手教学员如何下载yolov5相关工具,如何安装相关环境、以及教大家一步一步训练模型,调用模型,labview封装yolov5相关vi。

    

视频共有20多小节,每个视频是侧重于某一个或者某方面知识点,但是他们又相互关联,互为基础,通过做一个个实际的操作,让大家快速的成长为一名有经验的能够独立做labview调用yolov5项目的研发工程师或高级工程师。

课程讲师

 龙哥

龙哥,使用LabVIEW开发了大量视觉检测、运动控制、数据采集方面软件,具有丰富的非标自动化设备经验。授权16项labview视觉软件著作权;编写了《Labview视觉算子详解》一书;开发了《labview机器视觉实用教程》全套2000分钟视频教程,《龙哥手把手教你学视觉-视觉篇》,《龙哥手把手教你学视觉-运动篇》,《龙哥手把手教你学视觉-双ccd篇》,《龙哥手把手教你学视觉-通用视觉框架篇》,《Labview懒人教程-小白入门》累计学员达2000多人,累计学习人次4万余次;在电子发烧友等论坛发帖浏览量达10万人次;优酷发布的免费学习视频,累计播放量达2万余次,在LabVIEW视觉应用领域,首次利用LabVIEW开发了“UVisionBuilder1.0”免编程视觉通用软件,目前已被多家自动化设备公司采购,累计销售量200多套。

本套餐主要讲解内容

1.yolov5训练环境配置

2.Yolov5训练与测试

3.Yolov5模型导出

4.Yolov5模型openvion优化

5.Labview中一键训练yolov5模型

6.Labview封装yolov5模型调用库子vi

7.Labview调用yolov5模型进行摄像头实时检测

学习本课程后,你可以获得

1. 快速掌握yolov5在labview中应用的关键操作;

2. 知晓yolov5训练技巧、如何标注以及训练参数的设置;

3. 掌握yolov5训练的模型效果评价技巧;

4. 掌握yolov5环境配置的最快捷的方法;

5. 深入yolov5中train.py各个参数的含义;

6. 掌握yolov5的coco.yaml和yolov5.yaml参数设置方法;

7. 掌握yolov5的trian.py和detect.py的调用方法;

8. 学会分析外观检测案例中缺陷特征,确定标注方法中;

9. 能够熟练运用labview将xml标注文件转化为yolo的label标注文件;

10. 掌握利用labview生成coco.yaml和yolov5.yaml文件的方法;

11. 掌握labview调用控制台指令训练yolov5数据模型;

12. 学到labview封装yolov5(龙哥独家封装的cpu加速)函数库vi。

13.掌握labview调用yolov5模型对图片进行推理检测

14.掌握labview调用yolov5模型对摄像头动态检测

适合学习群体

1、对labview视觉技术和深度学习yolov5研发感兴趣的同学(含电子信息类的大学生,工程研发技术人员,视觉爱好者等);

2、想积累labview复杂外观检测设计研发经验,找到属于自己理想的高薪工作的人群;

3、技术到了瓶颈,想要技能提升,得到加薪或者快速升迁的人群;

4、想快速成为一名高端labview视觉研发工程师,从事令人羡慕的研发类工作的人群。

  

课程包含内容

总时长500+分钟

目录

1.安装anaconda3并配置yolov5虚拟环境  21'

2.安装pytorch和yolov5依赖环境  22'

3.手动方式训练yolov5的流程介绍 13

4.手动训练cat_dog数据集 13

5.cat_dog训练界面分析模型测试 8

6.labview编写读取xml标注文件信息 42

7.labview编写获取所有xml标注文件names 23

8.labview编写如何生成train_test文件 15

9.labview编写将xml标注文件转为yolo格式labels文件 32

10.labview生成train_test后测试yolov5训练效果  11

10.labview生成train_test后测试yolov5训练效果1  2

11.labview编写如何生成yolov5训练配置文件coco.yaml 17

12.labview编写如何生成yolov5训练配置文件yolov5.yaml 12

13.labview编写yolov5训练界面:获取路径和刷新目录子vi 40

14.labview编写yolov5训练界面:新建目录 20

15.labview编写yolov5训练界面:生成配置文件-开始训练子vi 25

16.labview编写yolov5训练界面:测试模型子vi 12

17.labview+yolov5训练案例:pin引脚缺陷检测配置 6

18.abview+yolov5训练案例:pin引脚缺陷训练测试 15

19.labview+yolov5训练案例:药丸缺陷训练测试 18

20.labview+yolov5训练案例:裂纹缺陷训练文件配置 31

21.labview+yolov5训练案例:裂纹缺陷训练测试 11

22.labview+yolov5训练案例:开关缺陷训练测试 7

23.labview调用yolov5模型:openvino软件安装环境配置 17

24.labview调用yolov5模型:load_model,run_model等函数封装vi 50

25.labview调用yolov5模型:摄像头动态检测logo标识案例 23

注意事项:

龙哥手把手教你学视觉-LabVIEW深度学习简明教程,分为【tensorflow篇】+【yolov4篇】+【YOLOV5篇】3个篇章

各篇章必要的硬件配置:

【tensorflow篇】

训练:intel  cpu或gpu:N卡1060,20系列可用,30系列显卡不可用

调用:intel  cpu

【yolov4篇】

训练:gpu:N卡1060,20系列可用,30系列显卡不可用(后续课程升级后将可用)

调用:gpu:N卡1060,20系列可用,30系列显卡不可用(后续课程升级后将可用)

【YOLOV5篇】

训练:intel  cpu或gpu:N卡1060,20系列可用,30系列显卡(待测试)

调用:intel  cpu

如果觉得本文对你有帮助,请帮忙转发,谢谢!

                 

  • 0
    点赞
  • 11
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: LabVIEW是一个图形化编程软件,用于数据采集、数据分析和控制系统开发。要调用Yolov5模型,需要使用LabVIEW Vision模块,该模块提供了图像处理和计算机视觉的功能和工具。 首先,需要将Yolov5模型加载到LabVIEW中。可以使用Python节点,在其中调用Yolov5模型并提供图像输入。Python节点是LabVIEW中的一个工具,用于在LabVIEW环境中运行Python脚本。可以在Python节点中安装Yolov5依赖库,并编写代码来调用Yolov5模型。 在LabVIEW中创建一个Python节点,并在节点中安装Yolov5依赖库,如torch、cv2等。然后,编写Python代码,在其中使用torch加载训练好的Yolov5模型,并调用该模型对输入图像进行目标检测。 接下来,在LabVIEW中需要将图像传递给Python节点。可以使用图像采集模块来获取图像,如Vision Acquisition Software或Vision Development Module。获取到图像后,可以将其传递给Python节点的输入。 在Python节点中,接收LabVIEW传递的图像并调用Yolov5模型进行目标检测。检测到目标后,可以将结果返回给LabVIEW进行进一步处理或显示。 最后,可以在LabVIEW界面上显示检测到的目标和相关信息。可以使用LabVIEW的图形化工具来创建用户界面,如图像显示控件或文本框。将Yolov5模型的输出结果传递给这些LabVIEW控件,即可在界面上实时显示目标检测结果。 总的来说,LabVIEW可以通过使用Python节点和LabVIEW Vision模块来调用Yolov5模型。这种集成可以实现图像采集、目标检测和结果显示等功能,使LabVIEW具备了人工智能方面的能力。 ### 回答2: LabVIEW是一种图形化编程语言,可以进行数据获取、处理、分析和可视化等工作。要调用Yolov5模型,我们可以通过以下步骤来实现: 1. 安装Yolov5模型:在LabVIEW中,我们需要将Yolov5模型安装到电脑上。可以从官方网站或第三方代码库下载并按照相应的安装步骤进行安装。 2. 导入Yolov5模型:在LabVIEW的图形化编程界面中,我们可以使用相应的节点来导入Yolov5模型。可以使用模型导入节点或者读取模型文件的节点,将模型加载到LabVIEW中。 3. 配置输入数据:Yolov5模型需要输入图像进行目标检测,因此我们需要配置输入数据节点。通过配置节点的参数,我们可以将输入数据与模型进行连接,以便进行目标检测。 4. 运行模型:在LabVIEW中,可以通过执行节点的方式来运行已经导入的Yolov5模型。可以使用执行节点的输入参数来传递待检测的图像数据,并通过执行节点的输出参数来获取检测结果。 5. 处理检测结果:通过执行节点,我们可以获得Yolov5模型的输出结果,其中包括检测到的目标的类别、位置信息等。在LabVIEW中,可以使用相应的节点来对检测结果进行处理,如绘制矩形框、添加标签等。 总之,要在LabVIEW中调用Yolov5模型,我们需要安装模型,导入模型,配置输入数据,执行模型并处理结果。这样可以方便地在LabVIEW中进行目标检测任务。 ### 回答3: LabVIEW作为一个图形化编程环境,可以调用深度学习模型来进行图像识别和物体检测。而YOLOv5是一种快速、准确的对象检测算法,可以在实时场景中检测和识别多个对象。 要在LabVIEW中调用YOLOv5模型,首先需要将YOLOv5模型加载到LabVIEW中。可以使用NI Vision模块来加载和处理图像数据。LabVIEW支持C、C++和Python等主要编程语言,因此可以通过外部插件或Python脚本将YOLOv5模型加载到LabVIEW中。 接下来,在LabVIEW中进行图像预处理,将图像转换为YOLOv5模型所需的输入格式。这可能包括图像的大小调整、归一化和通道转换等操作。 然后,使用NI SystemLink软件套件或NI LabVIEW Machine Learning Toolkit等工具,在LabVIEW中集成YOLOv5模型。这些工具提供了与深度学习模型的接口,可以与YOLOv5模型进行交互,输入待检测的图像,然后获取输出的目标检测结果。 最后,根据YOLOv5模型的输出结果,在LabVIEW中进行后续处理,例如绘制边界框、标记对象、计算对象的位置和尺寸等。 总之,要在LabVIEW中调用YOLOv5模型,需要将模型加载到LabVIEW中,进行图像预处理,然后使用相关工具集成模型,并进行后续处理来获取对象检测结果。这样就可以在LabVIEW中实现YOLOv5模型的调用和物体检测功能。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值