### 使用Transformer进行音频分类的代码示例
对于使用Transformer来进行音频分类的任务,可以采用类似于处理时间序列数据的方法。由于音频信号本质上是一维的时间序列,在输入到Transformer之前通常会经过一些预处理步骤。
#### 数据准备与特征提取
为了使音频能够被有效地送入Transformer模型中,一般先要对原始音频文件做一定的转换工作:
```python
import librosa
import numpy as np
def extract_features(file_path):
y, sr = librosa.load(file_path, sr=16000) # 加载并重采样至统一频率
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40).T # 提取MFCC特征
return mfccs.astype(np.float32)
# 假设我们有一个函数get_file_paths()返回一批音频路径列表
file_paths = get_file_paths()
features_list = [extract_features(path) for path in file_paths]
max_length = max(len(feat) for feat in features_list)
padded_sequences = tf.keras.preprocessing.sequence.pad_sequences(
features_list,
maxlen=max_length,
padding='post',
dtype='float'
)[^1]
```
这里选择了梅尔倒谱系数(MFCC)作为音频表示形式之一,并通过填充的方式让所有样本具有相同的长度以便后续批量计算。
#### 构建Transformer模型结构
构建适合于一维序列(即上述得到的声音片段)的简化版Transformer架构如下所示:
```python
from tensorflow import keras
import tensorflow as tf
class TransformerBlock(keras.layers.Layer):
def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1):
super(TransformerBlock, self).__init__()
self.att = keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim)
self.ffn = keras.Sequential([
keras.layers.Dense(ff_dim, activation="relu"),
keras.layers.Dense(embed_dim),
])
self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6)
self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6)
self.dropout1 = keras.layers.Dropout(rate)
self.dropout2 = keras.layers.Dropout(rate)
def call(self, inputs, training):
attn_output = self.att(inputs, inputs)
attn_output = self.dropout1(attn_output, training=training)
out1 = self.layernorm1(inputs + attn_output)
ffn_output = self.ffn(out1)
ffn_output = self.dropout2(ffn_output, training=training)
return self.layernorm2(out1 + ffn_output)
input_shape = (None,) + padded_sequences.shape[-1:]
inputs = keras.Input(shape=input_shape)
embedding_layer = keras.layers.Embedding(input_dim=vocab_size, output_dim=emb_dim)(inputs)
transformer_block_1 = TransformerBlock(embed_dim=emb_dim, num_heads=n_head, ff_dim=ff_dim)
x = transformer_block_1(embedding_layer)
global_avg_pooling = keras.layers.GlobalAveragePooling1D()(x)
dropout_layer = keras.layers.Dropout(dropout_rate)(global_avg_pooling)
output_layer = keras.layers.Dense(n_classes, activation='softmax')(dropout_layer)
model = keras.Model(inputs=inputs, outputs=output_layer)
model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy'])
print(model.summary())
```
此部分定义了一个简单的基于多头自注意机制(`MultiHeadAttention`)和前馈神经网络组成的变压器模块`TransformerBlock`,以及整个模型框架[^2]。
请注意以上代码仅为示意性质,实际应用时还需要考虑更多细节调整参数配置以适应具体场景需求。