基于Transformer的语音识别与音频分类

重磅推荐专栏:
《大模型AIGC》
《课程大纲》
《知识星球》

本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展

在这里插入图片描述

1. 复习一下Transformer

1.1 Transformer的原理是什么?

Transformer是一种深度学习

### 使用Transformer进行音频分类的代码示例 对于使用Transformer来进行音频分类的任务,可以采用类似于处理时间序列数据的方法。由于音频信号本质上是一维的时间序列,在输入到Transformer之前通常会经过一些预处理步骤。 #### 数据准备特征提取 为了使音频能够被有效地送入Transformer模型中,一般先要对原始音频文件做一定的转换工作: ```python import librosa import numpy as np def extract_features(file_path): y, sr = librosa.load(file_path, sr=16000) # 加载并重采样至统一频率 mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=40).T # 提取MFCC特征 return mfccs.astype(np.float32) # 假设我们有一个函数get_file_paths()返回一批音频路径列表 file_paths = get_file_paths() features_list = [extract_features(path) for path in file_paths] max_length = max(len(feat) for feat in features_list) padded_sequences = tf.keras.preprocessing.sequence.pad_sequences( features_list, maxlen=max_length, padding='post', dtype='float' )[^1] ``` 这里选择了梅尔倒谱系数(MFCC)作为音频表示形式之一,并通过填充的方式让所有样本具有相同的长度以便后续批量计算。 #### 构建Transformer模型结构 构建适合于一维序列(即上述得到的声音片段)的简化版Transformer架构如下所示: ```python from tensorflow import keras import tensorflow as tf class TransformerBlock(keras.layers.Layer): def __init__(self, embed_dim, num_heads, ff_dim, rate=0.1): super(TransformerBlock, self).__init__() self.att = keras.layers.MultiHeadAttention(num_heads=num_heads, key_dim=embed_dim) self.ffn = keras.Sequential([ keras.layers.Dense(ff_dim, activation="relu"), keras.layers.Dense(embed_dim), ]) self.layernorm1 = keras.layers.LayerNormalization(epsilon=1e-6) self.layernorm2 = keras.layers.LayerNormalization(epsilon=1e-6) self.dropout1 = keras.layers.Dropout(rate) self.dropout2 = keras.layers.Dropout(rate) def call(self, inputs, training): attn_output = self.att(inputs, inputs) attn_output = self.dropout1(attn_output, training=training) out1 = self.layernorm1(inputs + attn_output) ffn_output = self.ffn(out1) ffn_output = self.dropout2(ffn_output, training=training) return self.layernorm2(out1 + ffn_output) input_shape = (None,) + padded_sequences.shape[-1:] inputs = keras.Input(shape=input_shape) embedding_layer = keras.layers.Embedding(input_dim=vocab_size, output_dim=emb_dim)(inputs) transformer_block_1 = TransformerBlock(embed_dim=emb_dim, num_heads=n_head, ff_dim=ff_dim) x = transformer_block_1(embedding_layer) global_avg_pooling = keras.layers.GlobalAveragePooling1D()(x) dropout_layer = keras.layers.Dropout(dropout_rate)(global_avg_pooling) output_layer = keras.layers.Dense(n_classes, activation='softmax')(dropout_layer) model = keras.Model(inputs=inputs, outputs=output_layer) model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', metrics=['accuracy']) print(model.summary()) ``` 此部分定义了一个简单的基于多头自注意机制(`MultiHeadAttention`)和前馈神经网络组成的变压器模块`TransformerBlock`,以及整个模型框架[^2]。 请注意以上代码仅为示意性质,实际应用时还需要考虑更多细节调整参数配置以适应具体场景需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小爷毛毛(卓寿杰)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值