第一型曲线积分的思路总结

本文总结了第一型曲线积分的概念和计算方法,包括直角坐标系、极坐标系下的计算,以及如何处理技术题型。通过解析,将二维积分转化为一元积分,并探讨空间曲线积分的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

概念拆分研究

这一类的题目被积函数一般是二元函数,但实际上呢,因为是线性积分,所以被积函数的取值被夹在线上,因此,积分的区域–曲线的表达式可以带入被积函数。
这是我在学习这部分知识的时候对于可以带入的理解。
因此,一个看似二元的积分变成了伪二元真一元

但这并不是说问题就化简到了和求解一元积分一样的复杂度了,不然就不是第一型曲线积分了对吧!

坐标中一个弯弯曲曲的曲线,和平常一元积分笔笔直直的x轴或者y轴比起来,直觉上感受起来也应该多个系数什么的对吧。

没错,这个系数的计算一写好,第一型曲线将完全变成一元积分形式。

计算
直角坐标系下的计算

直角坐标系下, ds=(dx)2+(dy)2

这个是非常自然的一种微元角度。
通常给定的积分曲线是可以化为: y=y(x) 型的
因此 ds=1+(dydx)2dx
等同于把 dx

dydx=y(x)

所以积分可以化为:
Lf(x,y)=baf(x,y(x))1+y(x)

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值