文章目录
- Part A 第一类曲线积分 (对弧长的曲线积分)
- Part B 第二类曲线积分 (对坐标的曲线积分)
- 1 定义
- 2 性质
- 4 平面曲线计算方法
- (一) 定积分法
- (二) 二重积分法 — 格林公式 ( Green \text{Green} Green)
- (三) 路径无关条件
- (四) Green \text{Green}\, Green和路径无关问题做法总结
- (五) 计算思路总结
- 5 空间曲线计算方法
Part A 第一类曲线积分 (对弧长的曲线积分)
1 定义
平面曲线
∫ L f ( x , y ) d s = lim λ → 0 ∑ i = 1 n f ( ξ i , η i ) Δ s i \int_L f(x,y)\text{d}s=\lim_{\lambda\to 0}\sum\limits_{i=1}^nf(\xi_i,\eta_i)\Delta s_i ∫Lf(x,y)ds=λ→0limi=1∑nf(ξi,ηi)Δsi
注意:
(1)
L
L\,
L被称为积分弧段,
d
s
\text{d}s\,
ds称为弧微分.
(2)
∫
L
f
(
x
,
y
)
d
s
\int_Lf(x,y)\text{d}s\,
∫Lf(x,y)ds与
L
\,L\,
L的划分及点的取法无关.
(3) 若
f
(
x
,
y
)
\,f(x,y)\,
f(x,y)在
L
\,L\,
L上连续,则
∫
L
f
(
x
,
y
)
d
s
\,\int_Lf(x,y)\text{d}s\,
∫Lf(x,y)ds一定存在.
(4) 如果
L
\,L\,
L是闭曲线,曲线积分记为:
∮
L
f
(
x
,
y
)
d
s
\oint_Lf(x,y)\text{d}s
∮Lf(x,y)ds
(5) 定积分、重积分和第一类曲线曲面积分是一脉相承的,都有着相似的性质和处理思路.
空间曲线
∫ Γ f ( x , y , z ) d s = lim λ → 0 ∑ i = 1 n f ( ξ i , η i , ζ i ) Δ s i \int_\Gamma f(x,y,z)\text{d}s=\lim_{\lambda\to 0}\sum\limits_{i=1}^nf(\xi_i,\eta_i,\zeta_i)\Delta s_i ∫Γf(x,y,z)ds=λ→0limi=1∑nf(ξi,ηi,ζi)Δsi
注意:
(1)
Γ
\Gamma\,
Γ被称为积分弧段,
d
s
\text{d}s\,
ds称为弧微分.
(2)
∫
Γ
f
(
x
,
y
,
z
)
d
s
\int_\Gamma f(x,y,z)\text{d}s\,
∫Γf(x,y,z)ds与
Γ
\,\Gamma\,
Γ的划分及点的取法无关.
(3) 若
f
(
x
,
y
,
z
)
\,f(x,y,z)\,
f(x,y,z)在
Γ
\,\Gamma\,
Γ上连续,则
∫
Γ
f
(
x
,
y
,
z
)
d
s
\,\int_\Gamma f(x,y,z)\text{d}s\,
∫Γf(x,y,z)ds一定存在.
(4) 如果
Γ
\,\Gamma\,
Γ是闭曲线,曲线积分记为:
∮
Γ
f
(
x
,
y
,
z
)
d
s
\oint_\Gamma f(x,y,z)\text{d}s
∮Γf(x,y,z)ds
2 性质
平面曲线
基本性质:
∫
L
[
a
f
(
x
,
y
)
±
b
g
(
x
,
y
)
]
d
s
=
a
∫
L
f
(
x
,
y
)
d
s
±
b
∫
L
g
(
x
,
y
)
d
s
\int_L[af(x,y)\pm bg(x,y)]\text{d}s=a\int_Lf(x,y)\text{d}s\pm b\int_Lg(x,y)\text{d}s
∫L[af(x,y)±bg(x,y)]ds=a∫Lf(x,y)ds±b∫Lg(x,y)ds
∫
L
f
(
x
,
y
)
d
s
=
∫
L
1
f
(
x
,
y
)
d
s
+
∫
L
2
f
(
x
,
y
)
d
s
(
L
=
L
1
+
L
2
)
\int_Lf(x,y)\text{d}s=\int_{L_1}f(x,y)\text{d}s+\int_{L_2}f(x,y)\text{d}s\;\;(L=L_1+L_2)
∫Lf(x,y)ds=∫L1f(x,y)ds+∫L2f(x,y)ds(L=L1+L2)
∫
L
d
s
=
l
(
l
为
曲
线
的
长
度
)
\int_L\text{d}s=l\;\;(l\,为曲线的长度)
∫Lds=l(l为曲线的长度)
对称奇偶性质:
(1) 设曲线
L
\,L\,
L关于
y
\,y\,
y轴对称 (即关于变量
x
\,x\,
x对称),其中
L
1
\,L_1\,
L1是其位于
y
\,y\,
y轴右侧的部分,则:
∫
L
f
(
x
,
y
)
d
s
=
{
0
,
f
(
−
x
,
y
)
=
−
f
(
x
,
y
)
,
2
∫
L
1
f
(
x
,
y
)
d
s
,
f
(
−
x
,
y
)
=
f
(
x
,
y
)
.
\int_Lf(x,y)\text{d}s=\begin{cases}0,&f(-x,y)=-f(x,y),\\ 2\int_{L_1}f(x,y)\text{d}s,&f(-x,y)=f(x,y).\end{cases}
∫Lf(x,y)ds={0,2∫L1f(x,y)ds,f(−x,y)=−f(x,y),f(−x,y)=f(x,y).
(2) 设曲线
L
\,L\,
L关于
x
\,x\,
x轴对称 (即关于变量
y
\,y\,
y对称),其中
L
1
\,L_1\,
L1是其位于
x
\,x\,
x轴上侧的部分,则:
∫
L
f
(
x
,
y
)
d
s
=
{
0
,
f
(
x
,
−
y
)
=
−
f
(
x
,
y
)
,
2
∫
L
1
f
(
x
,
y
)
d
s
,
f
(
x
,
−
y
)
=
f
(
x
,
y
)
.
\int_Lf(x,y)\text{d}s=\begin{cases}0,&f(x,-y)=-f(x,y),\\ 2\int_{L_1}f(x,y)\text{d}s,&f(x,-y)=f(x,y).\end{cases}
∫Lf(x,y)ds={0,2∫L1f(x,y)ds,f(x,−y)=−f(x,y),f(x,−y)=f(x,y).
(3) 若
L
\,L\,
L关于直线
y
=
x
\,y=x\,
y=x对称,则:
∫
L
f
(
x
,
y
)
d
s
=
∫
L
f
(
y
,
x
)
d
s
\int_Lf(x,y)\text{d}s= \int_Lf(y,x)\text{d}s
∫Lf(x,y)ds=∫Lf(y,x)ds
(4) 若
L
\,L\,
L关于直线
y
=
−
x
\,y=-x\,
y=−x对称,则:
∫
L
f
(
x
,
y
)
d
s
=
∫
L
f
(
−
y
,
−
x
)
d
s
\int_Lf(x,y)\text{d}s= \int_Lf(-y,-x)\text{d}s
∫Lf(x,y)ds=∫Lf(−y,−x)ds
(5) 轮换对称性:若改变字母以后,积分弧段 L \,L\, L不发生改变,则可以使用轮换对称性.
空间曲线
基本性质:
∫
Γ
[
a
f
(
x
,
y
,
z
)
±
b
g
(
x
,
y
,
z
)
]
d
s
=
a
∫
Γ
f
(
x
,
y
,
z
)
d
s
±
b
∫
Γ
g
(
x
,
y
,
z
)
d
s
\int_\Gamma[af(x,y,z)\pm bg(x,y,z)]\text{d}s=a\int_\Gamma f(x,y,z)\text{d}s\pm b\int_\Gamma g(x,y,z)\text{d}s
∫Γ[af(x,y,z)±bg(x,y,z)]ds=a∫Γf(x,y,z)ds±b∫Γg(x,y,z)ds
∫
Γ
f
(
x
,
y
,
z
)
d
s
=
∫
Γ
1
f
(
x
,
y
,
z
)
d
s
+
∫
Γ
2
f
(
x
,
y
,
z
)
d
s
(
Γ
=
Γ
1
+
Γ
2
)
\int_\Gamma f(x,y,z)\text{d}s=\int_{\Gamma_1}f(x,y,z)\text{d}s+\int_{\Gamma_2}f(x,y,z)\text{d}s\;\;(\Gamma=\Gamma_1+\Gamma_2)
∫Γf(x,y,z)ds=∫Γ1f(x,y,z)ds+∫Γ2f(x,y,z)ds(Γ=Γ1+Γ2)
∫
Γ
d
s
=
l
(
l
为
曲
线
的
长
度
)
\int_\Gamma\text{d}s=l\;\;(l\,为曲线的长度)
∫Γds=l(l为曲线的长度)
对称奇偶性质:
(1) 设曲线
Γ
\,\Gamma\,
Γ关于
y
O
z
\,yOz\,
yOz平面对称,其中
Γ
1
\,\Gamma_1\,
Γ1是其位于
y
O
z
\,yOz\,
yOz面前方的部分,则:
∫
Γ
f
(
x
,
y
,
z
)
d
s
=
{
0
,
f
(
−
x
,
y
,
z
)
=
−
f
(
x
,
y
,
z
)
,
2
∫
Γ
1
f
(
x
,
y
,
z
)
d
s
,
f
(
−
x
,
y
,
z
)
=
f
(
x
,
y
,
z
)
.
\int_\Gamma f(x,y,z)\text{d}s=\begin{cases}0,&f(-x,y,z)=-f(x,y,z),\\ 2\int_{\Gamma_1}f(x,y,z)\text{d}s,&f(-x,y,z)=f(x,y,z).\end{cases}
∫Γf(x,y,z)ds={0,2∫Γ1f(x,y,z)ds,f(−x,y,z)=−f(x,y,z),f(−x,y,z)=f(x,y,z).
(2) 设曲线
Γ
\,\Gamma\,
Γ关于
z
O
x
\,zOx\,
zOx平面对称,其中
Γ
1
\,\Gamma_1\,
Γ1是其位于
z
O
x
\,zOx\,
zOx面右方的部分,则:
∫
Γ
f
(
x
,
y
,
z
)
d
s
=
{
0
,
f
(
x
,
−
y
,
z
)
=
−
f
(
x
,
y
,
z
)
,
2
∫
Γ
1
f
(
x
,
y
,
z
)
d
s
,
f
(
x
,
−
y
,
z
)
=
f
(
x
,
y
,
z
)
.
\int_\Gamma f(x,y,z)\text{d}s=\begin{cases}0,&f(x,-y,z)=-f(x,y,z),\\ 2\int_{\Gamma_1}f(x,y,z)\text{d}s,&f(x,-y,z)=f(x,y,z).\end{cases}
∫Γf(x,y,z)ds={0,2∫Γ1f(x,y,z)ds,f(x,−y,z)=−f(x,y,z),f(x,−y,z)=f(x,y,z).
(3) 设曲线
Γ
\,\Gamma\,
Γ关于
x
O
y
\,xOy\,
xOy平面对称,其中
Γ
1
\,\Gamma_1\,
Γ1是其位于
x
O
y
\,xOy\,
xOy面上方的部分,则:
∫
Γ
f
(
x
,
y
,
z
)
d
s
=
{
0
,
f
(
x
,
y
,
−
z
)
=
−
f
(
x
,
y
,
z
)
,
2
∫
Γ
1
f
(
x
,
y
,
z
)
d
s
,
f
(
x
,
y
,
−
z
)
=
f
(
x
,
y
,
z
)
.
\int_\Gamma f(x,y,z)\text{d}s=\begin{cases}0,&f(x,y,-z)=-f(x,y,z),\\ 2\int_{\Gamma_1}f(x,y,z)\text{d}s,&f(x,y,-z)=f(x,y,z).\end{cases}
∫Γf(x,y,z)ds={0,2∫Γ1f(x,y,z)ds,f(x,y,−z)=−f(x,y,z),f(x,y,−z)=f(x,y,z).
(4) 轮换对称性:若曲线符合轮换对称性,则
∫
Γ
f
(
x
,
y
,
z
)
d
s
=
∫
Γ
f
(
y
,
z
,
x
)
d
s
=
∫
Γ
f
(
z
,
x
,
y
)
d
s
\int_\Gamma f(x,y,z)\text{d}s=\int_\Gamma f(y,z,x)\text{d}s= \int_\Gamma f(z,x,y)\text{d}s
∫Γf(x,y,z)ds=∫Γf(y,z,x)ds=∫Γf(z,x,y)ds
轮换是指保持
x
\,x
x、
y
y
y、
z
z\,
z坐标轴相对顺序不变的交换.
本质上是由于按照这种规则重新命名坐标轴,
Γ
\,\Gamma\,
Γ不变,使得从形式上看,只是被积函数在改变.
比如, Γ : { x 2 + y 2 + z 2 = 1 x + y + z = a 2 \Gamma:\begin{cases}x^2+y^2+z^2=1\\x+y+z=\frac{a}{2}\end{cases} Γ:{x2+y2+z2=1x+y+z=2a,就具有轮换对称性,满足上面的等式.
更一般地,由于交换
x
\,x
x、
y
y
y、
z
z\,
z三者中任意两个 (比如交换
x
\,x\,
x和
y
\,y
y),
Γ
\Gamma\,
Γ不变. 所以
Γ
\,\Gamma\,
Γ还满足下面这样的关系:
∫
Γ
f
(
x
,
y
,
z
)
d
s
=
∫
Γ
f
(
y
,
x
,
z
)
d
s
\int_\Gamma f(x,y,z)\text{d}s=\int_\Gamma f(y,x,z)\text{d}s
∫Γf(x,y,z)ds=∫Γf(y,x,z)ds
例. Γ : { x 2 + y 2 + z 2 = a 2 x + y + z = 3 2 a \Gamma:\begin{cases}x^2+y^2+z^2=a^2\\x+y+z=\frac{3}{2}a\end{cases} Γ:{x2+y2+z2=a2x+y+z=23a,计算 ∮ Γ y z d z \,\oint _\Gamma yz\text{d}z ∮Γyzdz.
I = ∮ Γ y z d s = ∮ Γ z x d s = ∮ Γ x y d s I=\oint _\Gamma yz\text{d}s=\oint_\Gamma zx\text{d}s=\oint_\Gamma xy\text{d}s I=∮Γyzds=∮Γzxds=∮Γxyds I = 1 3 ∮ Γ ( x y + y z + z x ) d s = 1 6 ∮ Γ [ ( x + y + z ) 2 − ( x 2 + y 2 + z 2 ) ] d s I=\frac{1}{3}\oint_\Gamma (xy+yz+zx)\text{d}s=\frac{1}{6}\oint_\Gamma[(x+y+z)^2-(x^2+y^2+z^2)]\text{d}s I=31∮Γ(xy+yz+zx)ds=61∮Γ[(x+y+z)2−(x2+y2+z2)]ds
3 计算方法与思路
(一) 替代法
若被积函数中有曲线的表达式,则可以直接整体替代.
原因:因为曲线积分的积分区域是一个严格成立的等式(重积分的积分区域是一个不等式,所以不能直接代入),无论被积函数中的自变量如何组合,自变量都满足这个等式,所以可以直接替代.
例1. 计算 ∫ L ( x + y ) 2 d s \,\int_L{(x+y)}^2\text{d}s ∫L(x+y)2ds,其中 L : x 2 + y 2 = 9 ( y ⩾ 0 ) \,L:x^2+y^2=9\;(y\geqslant 0) L:x2+y2=9(y⩾0).
解:
∫ L ( x + y ) 2 d s = ∫ L ( x 2 + y 2 ) d s = ∫ L 9 ds = 9 ⋅ 3 π = 27 π . \int_L(x+y)^2\text{d}s=\int_L({\color{Blue}x^2+y^2})\text{d}s=\int_L{\color{Blue}9}\text{ds}=9\cdot3\pi=27\pi. ∫L(x+y)2ds=∫L(x2+y2)ds=∫L9ds=9⋅3π=27π.
替代法还需要注意的就是曲线长度的确定,有的题目可能不会直接给出,需要找几何关系,比如:
Γ
:
{
x
2
+
y
2
+
z
2
=
4
2
x
+
3
y
−
4
z
=
0
\Gamma:\begin{cases}x^2+y^2+z^2=4\\2x+3y-4z=0\end{cases}
Γ:{x2+y2+z2=42x+3y−4z=0
可以看出,曲线 Γ \,\Gamma\, Γ是平面过球心形成的,所以其长度就是 4 π \,4\pi 4π.
例2. Γ : { x 2 + y 2 + z 2 = a 2 x + y + z = 3 a 2 \Gamma:\begin{cases}x^2+y^2+z^2=a^2\\x+y+z=\frac{3a}{2}\end{cases} Γ:{x2+y2+z2=a2x+y+z=23a,计算: ∮ Γ 2 y z + 2 z x + 2 x y d s \oint_\Gamma 2yz+2zx+2xy\text{d}s ∮Γ2yz+2zx+2xyds.
解:
I = ∮ Γ 2 y z + 2 z x + 2 x y d s = ∮ Γ [ ( x + y + z ) 2 − ( x 2 + y 2 + z 2 ) ] ds = 5 4 a 2 ⋅ ∮ Γ d s I=\oint_\Gamma 2yz+2zx+2xy\text{d}s=\oint_\Gamma [(x+y+z)^2-(x^2+y^2+z^2)]\text{ds}=\frac{5}{4}a^2\cdot\oint_\Gamma\text{d}s I=∮Γ2yz+2zx+2xyds=∮Γ[(x+y+z)2−(x2+y2+z2)]ds=45a2⋅∮Γds通过几何关系可以确定 Γ \,\Gamma\, Γ半径为 a 2 \,\frac{a}{2} 2a, I = 5 4 π a 3 I=\frac{5}{4}\pi a^3 I=45πa3.
特别强调:对于形如
{
x
2
+
y
2
+
z
2
=
R
2
a
x
+
b
y
+
c
z
=
e
\,\begin{cases}x^2+y^2+z^2=R^2\\ax+by+cz=e\end{cases}\,
{x2+y2+z2=R2ax+by+cz=e的曲线长度的计算方法:
设该曲线(平面所截圆)的半径为
r
\,r
r,原点
O
\,O\,
O到平面
a
x
+
b
y
+
c
z
=
e
\,ax+by+cz=e\,
ax+by+cz=e的距离为
d
\,d\,
d.
由几何关系可知:
r
2
=
R
2
−
d
2
,
d
=
∣
e
∣
a
2
+
b
2
+
c
2
r^2=R^2-d^2,d=\frac{|e|}{\sqrt{a^2+b^2+c^2}}
r2=R2−d2,d=a2+b2+c2∣e∣
于是就能解出 r \,r r,得到曲线长度为 2 π r \,2\pi r 2πr.
(二) 定积分法
直角坐标计算公式
此方法仅适用于平面曲线.
d
s
=
1
+
φ
′
2
(
x
)
d
x
\color{Purple}\text{d}s=\sqrt{1+\varphi'^2(x)}\text{d}x
ds=1+φ′2(x)dx
设
L
:
y
=
φ
(
x
)
(
a
⩽
x
⩽
b
)
\,L:y=\varphi(x)\,(a\leqslant x\leqslant b)
L:y=φ(x)(a⩽x⩽b),则
∫
L
f
(
x
,
y
)
d
s
=
∫
a
b
f
[
x
,
φ
(
x
)
]
1
+
φ
′
2
(
x
)
d
x
\int_Lf(x,y)\text{d}s=\int^b_af[x,\varphi(x)]\sqrt{1+\varphi'^2(x)}\text{d}x
∫Lf(x,y)ds=∫abf[x,φ(x)]1+φ′2(x)dx
设
L
:
x
=
φ
(
y
)
(
a
⩽
x
⩽
b
)
\,L:x=\varphi(y)\,(a\leqslant x\leqslant b)
L:x=φ(y)(a⩽x⩽b),则
∫
L
f
(
x
,
y
)
d
s
=
∫
a
b
f
[
φ
(
y
)
,
y
]
1
+
φ
′
2
(
y
)
d
y
\int_Lf(x,y)\text{d}s=\int^b_af[\varphi(y),y]\sqrt{1+\varphi'^2(y)}\text{d}y
∫Lf(x,y)ds=∫abf[φ(y),y]1+φ′2(y)dy
参数方程计算公式
此方法平面曲线、空间曲线都适用.
(1) 平面曲线:
d
s
=
φ
′
2
(
t
)
+
ψ
′
2
(
t
)
d
t
\color{Purple}\text{d}s=\sqrt{\varphi'^2(t)+\psi'^2(t)}\text{d}t
ds=φ′2(t)+ψ′2(t)dt
设
L
:
{
x
=
φ
(
t
)
y
=
ψ
(
t
)
(
α
⩽
t
⩽
β
)
\,L:\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}\,(\alpha\leqslant t\leqslant\beta)
L:{x=φ(t)y=ψ(t)(α⩽t⩽β),则
∫
L
f
(
x
,
y
)
d
s
=
∫
α
β
f
[
φ
(
t
)
,
ψ
(
t
)
]
φ
′
2
(
t
)
+
ψ
′
2
(
t
)
d
t
\int_Lf(x,y)\text{d}s=\int^\beta_\alpha f[\varphi(t),\psi(t)]\sqrt{\varphi'^2(t)+\psi'^2(t)}\text{d}t
∫Lf(x,y)ds=∫αβf[φ(t),ψ(t)]φ′2(t)+ψ′2(t)dt
注意参数方程的设法:如 L : x 2 + ( y + 2 ) 2 = 1 \,L:x^2+(y+2)^2=1 L:x2+(y+2)2=1,
设 L : { x = cos t y + 2 = sin t ( α ⩽ t ⩽ β ) \,L:\begin{cases}x=\text{cos}t\\y+2=\text{sin}t\end{cases}\,(\alpha\leqslant t\leqslant\beta) L:{x=costy+2=sint(α⩽t⩽β)
(2) 空间曲线:
d
s
=
φ
′
2
(
t
)
+
ψ
′
2
(
t
)
+
ω
′
2
(
t
)
d
t
\color{Purple}\text{d}s=\sqrt{\varphi'^2(t)+\psi'^2(t)+\omega'^2(t)}\text{d}t
ds=φ′2(t)+ψ′2(t)+ω′2(t)dt
设
Γ
:
{
x
=
φ
(
t
)
y
=
ψ
(
t
)
z
=
ω
(
t
)
(
α
⩽
t
⩽
β
)
\,\Gamma:\begin{cases}x=\varphi(t)\\ y=\psi(t)\\ z=\omega(t) \end{cases}\,(\alpha\leqslant t\leqslant\beta)
Γ:⎩⎪⎨⎪⎧x=φ(t)y=ψ(t)z=ω(t)(α⩽t⩽β),则
∫
Γ
f
(
x
,
y
,
z
)
d
s
=
∫
α
β
f
[
φ
(
t
)
,
ψ
(
t
)
,
ω
(
t
)
]
φ
′
2
(
t
)
+
ψ
′
2
(
t
)
+
ω
′
2
(
t
)
d
t
\int_\Gamma f(x,y,z)\text{d}s=\int^\beta_\alpha f[\varphi(t),\psi(t),\omega(t)]\sqrt{\varphi'^2(t)+\psi'^2(t)+\omega'^2(t)}\text{d}t
∫Γf(x,y,z)ds=∫αβf[φ(t),ψ(t),ω(t)]φ′2(t)+ψ′2(t)+ω′2(t)dt
极坐标计算公式
此方法仅适用于平面曲线.
d
s
=
r
2
(
θ
)
+
r
′
2
(
θ
)
d
θ
\color{Purple}\text{d}s=\sqrt{r^2(\theta)+r'^2(\theta)}\text{d}\theta
ds=r2(θ)+r′2(θ)dθ
设
L
:
r
=
r
(
θ
)
(
θ
1
⩽
θ
⩽
θ
2
)
\,L:r=r(\theta)\;(\theta_1\leqslant\theta\leqslant\theta_2)
L:r=r(θ)(θ1⩽θ⩽θ2),由
{
x
=
r
(
θ
)
cos
θ
y
=
r
(
θ
)
sin
θ
\left\{\begin{matrix} x=r(\theta)\text{cos}\theta\\ y=r(\theta)\text{sin}\theta \end{matrix}\right.
{x=r(θ)cosθy=r(θ)sinθ
∫
L
f
(
x
,
y
)
d
s
=
∫
θ
1
θ
2
f
(
r
(
θ
)
cos
θ
,
r
(
θ
)
sin
θ
)
r
2
(
θ
)
+
r
′
2
(
θ
)
d
θ
\int_Lf(x,y)\text{d}s=\int_{\theta_1}^{\theta_2}f\big(r(\theta)\text{cos}\theta,r(\theta)\text{sin}\theta\big)\sqrt{r^2(\theta)+r'^2(\theta)}\text{d}\theta
∫Lf(x,y)ds=∫θ1θ2f(r(θ)cosθ,r(θ)sinθ)r2(θ)+r′2(θ)dθ
(四) 计算思路总结
以平面曲线为例:
步骤:
step 1:绘制曲线.
step 2:检查被积函数是否可以使用对称奇偶性、替代法,简化积分式.
step 3:拆分曲线 (如果需要的话),确定每段的范围;
(比如一个扇形的边界曲线,就需要拆分成两段直线段和一段圆弧段).
step 4:根据不同段的特性选择公式 (直角坐标、参数方程、极坐标) 转化为定积分计算.
例:
设 L 1 : y = φ ( x ) \,L_1:y=\varphi(x)\, L1:y=φ(x)( a ⩽ x ⩽ b a\leqslant x\leqslant b a⩽x⩽b), ∫ L 1 f ( x , y ) d s = . . . \int_{L_1}f(x,y)\text{d}s=... ∫L1f(x,y)ds=...
设 L 2 : { x = φ ( t ) y = ψ ( t ) ( α ⩽ x ⩽ β ) \,L_2:\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}\,(\alpha\leqslant x\leqslant\beta) L2:{x=φ(t)y=ψ(t)(α⩽x⩽β), ∫ L 2 f ( x , y ) d s = . . . \int_{L_2}f(x,y)\text{d}s=... ∫L2f(x,y)ds=...
设 L 3 : . . . \,L_3:... L3:...
注意:如果结合重要曲线(如双纽线、心脏线等)极坐标图形的考察,常常需要转换为极坐标求解.
4 几何应用
(1) 弧长 (光滑曲线)
平面曲线
L
:
y
=
f
(
x
)
\,L:y=f(x)\,
L:y=f(x)(或表示为
L
:
{
x
=
φ
(
t
)
y
=
ψ
(
t
)
\,L:\begin{cases}x=\varphi(t)\\y=\psi(t)\,\end{cases}
L:{x=φ(t)y=ψ(t))的弧长(长度)
l
\,l\,
l为:
l
=
∫
L
d
s
=
∫
a
b
1
+
f
′
2
(
x
)
d
x
=
∫
α
β
φ
′
2
(
t
)
+
ψ
′
2
(
t
)
d
t
\color{Blue}l=\int_L\text{d}s=\int^b_a\sqrt{1+f'^2(x)}\text{d}x =\int^\beta_\alpha\sqrt{\varphi'^2(t)+\psi'^2(t)}\text{d}t
l=∫Lds=∫ab1+f′2(x)dx=∫αβφ′2(t)+ψ′2(t)dt
空间曲线 Γ : { x = φ ( t ) y = ψ ( t ) z = ω ( t ) \,\Gamma:\begin{cases}x=\varphi(t)\\y=\psi(t)\\z=\omega(t)\,\end{cases}\, Γ:⎩⎪⎨⎪⎧x=φ(t)y=ψ(t)z=ω(t)的弧长(长度) l \,l\, l为:
l = ∫ Γ d s = ∫ α β φ ′ 2 ( t ) + ψ ′ 2 ( t ) + ω ′ 2 ( t ) d t \color{Blue}l=\int_\Gamma\text{d}s=\int^\beta_\alpha\sqrt{\varphi'^2(t)+\psi'^2(t)+\omega'^2(t)}\text{d}t l=∫Γds=∫αβφ′2(t)+ψ′2(t)+ω′2(t)dt
(2) 形心坐标公式 (光滑曲线)
形心:几何形体的中心.
光滑平面曲线 L \,L\, L的形心坐标 ( x ˉ , y ˉ ) \,\color{Purple}(\bar{x},\bar{y})\, (xˉ,yˉ)计算公式: x ˉ = ∫ L x d s ∫ L d s = 1 l ∫ L x d s \bar{x}=\frac{\int_L{\color{Blue}x}\text{d}s}{\int_L\text{d}s}=\frac{1}{l}\int_L{\color{Blue}x}\text{d}s xˉ=∫Lds∫Lxds=l1∫Lxds y ˉ = ∫ L y d s ∫ L d s = 1 l ∫ L y d s \bar{y}=\frac{\int_L{\color{Blue}y}\text{d}s}{\int_L\text{d}s}=\frac{1}{l}\int_L{\color{Blue}y}\text{d}s yˉ=∫Lds∫Lyds=l1∫Lyds
其中: l l\, l为曲线的弧长.
光滑空间曲线 Γ \,\Gamma\, Γ的形心坐标 ( x ˉ , y ˉ , z ˉ ) \,\color{Purple}(\bar{x},\bar{y},\bar{z})\, (xˉ,yˉ,zˉ)计算公式: x ˉ = ∫ Γ x d s ∫ Γ d s = 1 l ∫ Γ x d s \bar{x}=\frac{\int_\Gamma{\color{Blue}x}\text{d}s}{\int_\Gamma\text{d}s}=\frac{1}{l}\int_\Gamma{\color{Blue}x}\text{d}s xˉ=∫Γds∫Γxds=l1∫Γxds y ˉ = ∫ Γ y d s ∫ Γ d s = 1 l ∫ Γ y d s \bar{y}=\frac{\int_\Gamma{\color{Blue}y}\text{d}s}{\int_\Gamma\text{d}s}=\frac{1}{l}\int_\Gamma{\color{Blue}y}\text{d}s yˉ=∫Γds∫Γyds=l1∫Γyds z ˉ = ∫ Γ z d s ∫ Γ d s = 1 l ∫ Γ z d s \bar{z}=\frac{\int_\Gamma{\color{Blue}z}\text{d}s}{\int_\Gamma\text{d}s}=\frac{1}{l}\int_\Gamma{\color{Blue}z}\text{d}s zˉ=∫Γds∫Γzds=l1∫Γzds
其中: l l\, l为曲线的弧长.
形心公式逆用 (以平面曲线为例):
∫
L
x
d
s
=
x
ˉ
⋅
∫
L
d
s
=
x
ˉ
⋅
l
\int_L{\color{Blue}x}\text{d}s=\bar{x}\cdot \int_L\text{d}s=\bar{x}\cdot l
∫Lxds=xˉ⋅∫Lds=xˉ⋅l
∫
L
y
d
s
=
y
ˉ
⋅
∫
L
d
s
=
y
ˉ
⋅
l
\int_L{\color{Blue}y}\text{d}s=\bar{y}\cdot \int_L\text{d}s=\bar{y}\cdot l
∫Lyds=yˉ⋅∫Lds=yˉ⋅l
∫
L
z
d
s
=
z
ˉ
⋅
∫
L
d
s
=
z
ˉ
⋅
l
\int_L{\color{Blue}z}\text{d}s=\bar{z}\cdot \int_L\text{d}s=\bar{z}\cdot l
∫Lzds=zˉ⋅∫Lds=zˉ⋅l
在计算第一类曲线积分时,遇到 ∫ L x d s \,\int_L{\color{Blue}x}\text{d}s ∫Lxds、 ∫ L y d s \int_L{\color{Blue}y}\text{d}s ∫Lyds、 ∫ L z d s \int_L{\color{Blue}z}\text{d}s ∫Lzds,并且图形规则(可以直接看出形心)、弧长易于确定时,应立即想到形心公式的逆用. 通过逆用形心公式,可以避免计算弧微分、确定积分限,大大简化计算. 空间曲线同理.
5 物理应用
(1) 质量 (光滑曲线)
若
ρ
(
x
,
y
)
\,\rho(x,y)\,
ρ(x,y)为光滑平面曲线
L
\,L\,
L的线密度,则曲线质量为:
m
=
∫
L
ρ
(
x
,
y
)
d
s
\color{Blue}m=\int_L\rho(x,y)\text{d}s
m=∫Lρ(x,y)ds
若
ρ
(
x
,
y
,
z
)
\,\rho(x,y,z)\,
ρ(x,y,z)为光滑空间曲线
Γ
\,\Gamma\,
Γ的线密度,则曲线质量为:
m
=
∫
Γ
ρ
(
x
,
y
,
z
)
d
s
\color{Blue}m=\int_\Gamma\rho(x,y,z)\text{d}s
m=∫Γρ(x,y,z)ds
(2) 质心/重心坐标公式 (光滑曲线)
质心:质量的中心.
光滑平面曲线 L \,L\, L的质心坐标 ( x ˉ , y ˉ ) \,\color{Purple}(\bar{x},\bar{y})\, (xˉ,yˉ)计算公式:
设光滑平面曲线 L \,L\, L的线密度为 ρ ( x , y ) \,\color{Purple}\rho(x,y) ρ(x,y),则曲线的质心坐标为: x ˉ = ∫ L x ⋅ ρ ( x , y ) d s ∫ L ρ ( x , y ) d s \bar{x}=\frac{\int_L{\color{Blue}x}\cdot{\color{Purple}\rho(x,y)}\text{d}s}{\int_L{\color{Purple}\rho(x,y)}\text{d}s} xˉ=∫Lρ(x,y)ds∫Lx⋅ρ(x,y)ds y ˉ = ∫ L y ⋅ ρ ( x , y ) d s ∫ L ρ ( x , y ) d s \bar{y}=\frac{\int_L{\color{Blue}y}\cdot{\color{Purple}\rho(x,y)}\text{d}s}{\int_L{\color{Purple}\rho(x,y)}\text{d}s} yˉ=∫Lρ(x,y)ds∫Ly⋅ρ(x,y)ds
光滑空间曲线 Γ \,\Gamma\, Γ的质心坐标 ( x ˉ , y ˉ , z ˉ ) \,\color{Purple}(\bar{x},\bar{y},\bar{z})\, (xˉ,yˉ,zˉ)计算公式:
设光滑平面曲线
Γ
\,\Gamma\,
Γ的线密度为
ρ
(
x
,
y
,
z
)
\,\color{Purple}\rho(x,y,z)
ρ(x,y,z),则曲线的质心坐标为:
x
ˉ
=
∫
Γ
x
⋅
ρ
(
x
,
y
,
z
)
d
s
∫
Γ
ρ
(
x
,
y
,
z
)
d
s
\bar{x}=\frac{\int_\Gamma{\color{Blue}x}\cdot{\color{Purple}\rho(x,y,z)}\text{d}s}{\int_\Gamma{\color{Purple}\rho(x,y,z)}\text{d}s}
xˉ=∫Γρ(x,y,z)ds∫Γx⋅ρ(x,y,z)ds
y
ˉ
=
∫
Γ
y
⋅
ρ
(
x
,
y
,
z
)
d
s
∫
Γ
ρ
(
x
,
y
,
z
)
d
s
\bar{y}=\frac{\int_\Gamma{\color{Blue}y}\cdot{\color{Purple}\rho(x,y,z)}\text{d}s}{\int_\Gamma{\color{Purple}\rho(x,y,z)}\text{d}s}
yˉ=∫Γρ(x,y,z)ds∫Γy⋅ρ(x,y,z)ds
z
ˉ
=
∫
Γ
z
⋅
ρ
(
x
,
y
,
z
)
d
s
∫
Γ
ρ
(
x
,
y
,
z
)
d
s
\bar{z}=\frac{\int_\Gamma{\color{Blue}z}\cdot{\color{Purple}\rho(x,y,z)}\text{d}s}{\int_\Gamma{\color{Purple}\rho(x,y,z)}\text{d}s}
zˉ=∫Γρ(x,y,z)ds∫Γz⋅ρ(x,y,z)ds
注意:
(1) 从形式上看,质心公式只是在形心公式分子分母的曲线积分内部多乘了一个
ρ
\,\color{Purple}\rho
ρ.
(2) 当弧段密度分布均匀(即
ρ
\,\rho\,
ρ为常数)时,质心与形心重合.
(3) 重心:重心是重力平衡的重心,质心和重心是重合的.
(3) 转动惯量 (光滑曲线)
若 ρ ( x , y ) \,\rho(x,y)\, ρ(x,y)为光滑平面曲线 L \,L\, L的线密度,则其转动惯量计算公式为:
l
\,l\,
l绕
x
\,x\,
x轴的转动惯量为:
I
x
=
∫
L
y
2
⋅
ρ
(
x
,
y
)
d
s
{\color{Green}I_x}=\int_L{\color{Blue}y^2}\cdot{\color{Purple}\rho(x,y)}\text{d}s
Ix=∫Ly2⋅ρ(x,y)ds
l
\,l\,
l绕
y
\,y\,
y轴的转动惯量为:
I
y
=
∫
L
x
2
⋅
ρ
(
x
,
y
)
d
s
{\color{Green}I_y}=\int_L{\color{Blue}x^2}\cdot{\color{Purple}\rho(x,y)}\text{d}s
Iy=∫Lx2⋅ρ(x,y)ds
l
\,l\,
l绕原点的转动惯量为:
I
O
=
∫
L
(
x
2
+
y
2
)
⋅
ρ
(
x
,
y
)
d
s
{\color{Green}I_O}=\int_L{\color{Blue}(x^2+y^2)}\cdot{\color{Purple}\rho(x,y)}\text{d}s
IO=∫L(x2+y2)⋅ρ(x,y)ds
一般情况:
设
M
(
x
,
y
)
\,M(x,y)\,
M(x,y)是
D
\,D\,
D上的一点,
l
l\,
l为一条直线,
M
\,M\,
M到直线
l
\,l\,
l的距离为
d
\,d
d,则
D
\,D\,
D绕
l
\,l\,
l的转动惯量为:
I
l
=
∫
L
d
2
⋅
ρ
(
x
,
y
)
d
s
{\color{Green}I_l}=\int_L{\color{Blue}d^2}\cdot{\color{Purple}\rho(x,y)}\text{d}s
Il=∫Ld2⋅ρ(x,y)ds
若 ρ ( x , y , z ) \,\rho(x,y,z)\, ρ(x,y,z)为光滑空间曲线 Γ \,\Gamma\, Γ的线密度,则其转动惯量计算公式为:
Γ
\,\Gamma\,
Γ绕
x
\,x\,
x轴的转动惯量为:
I
x
=
∫
Γ
(
y
2
+
z
2
)
⋅
ρ
(
x
,
y
,
z
)
d
s
{\color{Green}I_x}=\int_\Gamma{\color{Blue}(y^2+z^2)}\cdot{\color{Purple}\rho(x,y,z)}\text{d}s
Ix=∫Γ(y2+z2)⋅ρ(x,y,z)ds
Γ
\,\Gamma\,
Γ绕
y
\,y\,
y轴的转动惯量为:
I
y
=
∫
Γ
(
x
2
+
z
2
)
⋅
ρ
(
x
,
y
,
z
)
d
s
{\color{Green}I_y}=\int_\Gamma{\color{Blue}(x^2+z^2)}\cdot{\color{Purple}\rho(x,y,z)}\text{d}s
Iy=∫Γ(x2+z2)⋅ρ(x,y,z)ds
Γ
\,\Gamma\,
Γ绕
z
\,z\,
z轴的转动惯量为:
I
z
=
∫
Γ
(
x
2
+
y
2
)
⋅
ρ
(
x
,
y
,
z
)
d
s
{\color{Green}I_z}=\int_\Gamma{\color{Blue}(x^2+y^2)}\cdot{\color{Purple}\rho(x,y,z)}\text{d}s
Iz=∫Γ(x2+y2)⋅ρ(x,y,z)ds
Γ
\,\Gamma\,
Γ绕原点的转动惯量为:
I
O
=
∫
Γ
(
x
2
+
y
2
+
z
2
)
⋅
ρ
(
x
,
y
,
z
)
d
s
{\color{Green}I_O}=\int_\Gamma{\color{Blue}(x^2+y^2+z^2)}\cdot{\color{Purple}\rho(x,y,z)}\text{d}s
IO=∫Γ(x2+y2+z2)⋅ρ(x,y,z)ds
一般情况:
设
M
(
x
,
y
,
z
)
\,M(x,y,z)\,
M(x,y,z)是
Γ
\,\Gamma\,
Γ上的一点,
l
l\,
l为一条直线,
M
\,M\,
M到直线
l
\,l\,
l的距离为
d
\,d
d,则
Γ
\,\Gamma\,
Γ绕
l
\,l\,
l的转动惯量为:
I
l
=
∫
Γ
d
2
⋅
ρ
(
x
,
y
,
z
)
d
s
{\color{Green}I_l}=\int_\Gamma{\color{Blue}d^2}\cdot{\color{Purple}\rho(x,y,z)}\text{d}s
Il=∫Γd2⋅ρ(x,y,z)ds
(4) 引力 (空间光滑曲线)
若空间光滑曲线 Γ \,\Gamma\, Γ的线密度为 ρ ( x , y , z ) \,\rho(x,y,z) ρ(x,y,z),则曲线对点 M ( x 0 , y 0 , z 0 ) \,M(x_0,y_0,z_0)\, M(x0,y0,z0)处质量为 m \,m\, m的质点引力 ( F x , F y , F z ) \,\color{Purple}(F_x,F_y,F_z)\, (Fx,Fy,Fz)的计算公式为: F x = G m ∫ Γ ρ ( x , y , z ) ( x − x 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d s {\color{Green}F_x}=Gm\int_\Gamma\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(x-x_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}s Fx=Gm∫Γ[(x−x0)2+(y−y0)2+z02]23ρ(x,y,z)(x−x0)ds F y = G m ∫ Γ ρ ( x , y , z ) ( y − y 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d s {\color{Green}F_y}=Gm\int_\Gamma\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(y-y_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}s Fy=Gm∫Γ[(x−x0)2+(y−y0)2+z02]23ρ(x,y,z)(y−y0)ds F z = G m ∫ Γ ρ ( x , y , z ) ( z − z 0 ) [ ( x − x 0 ) 2 + ( y − y 0 ) 2 + z 0 2 ] 3 2 d s {\color{Green}F_z}=Gm\int_\Gamma\frac{{\color{Purple}\rho(x,y,z)}{\color{Blue}(z-z_0)}}{[(x-x_0)^2+(y-y_0)^2+z_0^2]^{\frac{3}{2}}}\text{d}s Fz=Gm∫Γ[(x−x0)2+(y−y0)2+z02]23ρ(x,y,z)(z−z0)ds
G G\, G为引力常量.
Part B 第二类曲线积分 (对坐标的曲线积分)
1 定义
平面曲线
(1) 函数
P
(
x
,
y
)
\,P(x,y)\,
P(x,y)在有向曲线弧
L
\,L\,
L上对坐标
x
\,x\,
x的曲线积分 (第二类曲线积分):
∫
L
P
(
x
,
y
)
d
x
=
lim
λ
→
0
∑
i
=
1
n
P
(
ξ
i
,
η
i
)
Δ
x
i
\int_LP(x,y)\text{d}x=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}P(\xi_i,\eta_i)\Delta x_i
∫LP(x,y)dx=λ→0limi=1∑nP(ξi,ηi)Δxi
(2) 函数
Q
(
x
,
y
)
\,Q(x,y)\,
Q(x,y)在有向曲线弧
L
\,L\,
L上对坐标
y
\,y\,
y的曲线积分 (第二类曲线积分):
∫
L
Q
(
x
,
y
)
d
y
=
lim
λ
→
0
∑
i
=
1
n
Q
(
ξ
i
,
η
i
)
Δ
y
i
\int_LQ(x,y)\text{d}y=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}Q(\xi_i,\eta_i)\Delta y_i
∫LQ(x,y)dy=λ→0limi=1∑nQ(ξi,ηi)Δyi
(3) 简记:
∫
L
P
(
x
,
y
)
d
x
+
∫
L
Q
(
x
,
y
)
d
y
=
∫
L
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
\int_LP(x,y)\text{d}x+\int_LQ(x,y)\text{d}y={\color{Purple}\int_LP(x,y)\text{d}x+Q(x,y)\text{d}y}
∫LP(x,y)dx+∫LQ(x,y)dy=∫LP(x,y)dx+Q(x,y)dy
(4) 向量形式:
∫ L F ⃗ ( x , y ) ⋅ d r ⃗ \color{Purple}\int_L\vec{F}(x,y)\cdot\text{d}\vec{r} ∫LF(x,y)⋅dr
其中, F ⃗ ( x , y ) = P ( x , y ) i ⃗ + Q ( x , y ) j ⃗ \vec{F}(x,y)=P(x,y)\vec{i}+Q(x,y)\vec{j} F(x,y)=P(x,y)i+Q(x,y)j, d r ⃗ = d x i ⃗ + d y j ⃗ \text{d}\vec{r}=\text{d}x\vec{i}+\text{d}y\vec{j} dr=dxi+dyj.
注意:
(1)
L
L\,
L被称为积分弧段.
(2) 各曲线积分与
L
\,L\,
L的划分及点的取法无关.
(3) 若
P
(
x
,
y
)
\,P(x,y)
P(x,y)、
Q
(
x
,
y
)
Q(x,y)\,
Q(x,y)在光滑曲线弧
L
\,L\,
L上连续,则对应曲线积分一定存在.
(4) 二维空间物体在变力
F
⃗
(
x
,
y
)
=
{
P
(
x
,
y
)
,
Q
(
x
,
y
)
}
\vec F(x,y)=\{P(x,y),Q(x,y)\}\,
F(x,y)={P(x,y),Q(x,y)}作用下沿有向曲线段的做功:
d
W
=
F
⃗
(
x
,
y
)
⋅
d
s
⃗
=
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
\text{d}W=\vec{F}(x,y)\cdot\text{d}{\vec{s}}=P(x,y)\text{d}x+Q(x,y)\text{d}y
dW=F(x,y)⋅ds=P(x,y)dx+Q(x,y)dy
W
=
∫
L
d
W
=
∫
L
P
(
x
,
y
)
d
x
+
∫
L
Q
(
x
,
y
)
d
y
W=\int_L\text{d}W=\int_LP(x,y)\text{d}x+\int_LQ(x,y)\text{d}y
W=∫LdW=∫LP(x,y)dx+∫LQ(x,y)dy
空间曲线
(1) 函数
P
(
x
,
y
,
z
)
\,P(x,y,z)\,
P(x,y,z)在空间有向曲线弧
Γ
\,\Gamma\,
Γ上对坐标
x
\,x\,
x的曲线积分 (第二类曲线积分):
∫
Γ
P
(
x
,
y
,
z
)
d
x
=
lim
λ
→
0
∑
i
=
1
n
P
(
ξ
i
,
η
i
,
ζ
i
)
Δ
x
i
\int_\Gamma P(x,y,z)\text{d}x=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}P(\xi_i,\eta_i,\zeta_i)\Delta x_i
∫ΓP(x,y,z)dx=λ→0limi=1∑nP(ξi,ηi,ζi)Δxi
(2) 函数
Q
(
x
,
y
,
z
)
\,Q(x,y,z)\,
Q(x,y,z)在有向曲线弧
Γ
\,\Gamma\,
Γ上对坐标
y
\,y\,
y的曲线积分 (第二类曲线积分):
∫
Γ
Q
(
x
,
y
,
z
)
d
y
=
lim
λ
→
0
∑
i
=
1
n
Q
(
ξ
i
,
η
i
,
ζ
i
)
Δ
y
i
\int_\Gamma Q(x,y,z)\text{d}y=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}Q(\xi_i,\eta_i,\zeta_i)\Delta y_i
∫ΓQ(x,y,z)dy=λ→0limi=1∑nQ(ξi,ηi,ζi)Δyi
(3) 函数
R
(
x
,
y
,
z
)
\,R(x,y,z)\,
R(x,y,z)在有向曲线弧
Γ
\,\Gamma\,
Γ上对坐标
z
\,z\,
z的曲线积分 (第二类曲线积分):
∫
Γ
R
(
x
,
y
,
z
)
d
z
=
lim
λ
→
0
∑
i
=
1
n
R
(
ξ
i
,
η
i
,
ζ
i
)
Δ
z
i
\int_\Gamma R(x,y,z)\text{d}z=\lim\limits_{\lambda\to0}\sum\limits^n_{i=1}R(\xi_i,\eta_i,\zeta_i)\Delta z_i
∫ΓR(x,y,z)dz=λ→0limi=1∑nR(ξi,ηi,ζi)Δzi
(4) 简记:
∫
Γ
P
(
x
,
y
,
z
)
d
x
+
∫
Γ
Q
(
x
,
y
,
z
)
d
y
+
∫
Γ
R
(
x
,
y
,
z
)
d
z
=
∫
Γ
P
(
x
,
y
,
z
)
d
x
+
Q
(
x
,
y
,
z
)
d
y
+
R
(
x
,
y
,
z
)
d
z
\int_\Gamma P(x,y,z)\text{d}x+\int_\Gamma Q(x,y,z)\text{d}y+\int_\Gamma R(x,y,z)\text{d}z=\color{Purple}\int_\Gamma P(x,y,z)\text{d}x+Q(x,y,z)\text{d}y+R(x,y,z)\text{d}z
∫ΓP(x,y,z)dx+∫ΓQ(x,y,z)dy+∫ΓR(x,y,z)dz=∫ΓP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz
(5) 向量形式: ∫ Γ A ⃗ ( x , y , z ) ⋅ d r ⃗ \color{Purple}\int_\Gamma\vec{A}(x,y,z)\cdot\text{d}\vec{r} ∫ΓA(x,y,z)⋅dr
其中, A ⃗ ( x , y , z ) = P ( x , y , z ) i ⃗ + Q ( x , y , z ) j ⃗ + R ( x , y , z ) k ⃗ \vec{A}(x,y,z)=P(x,y,z)\vec{i}+Q(x,y,z)\vec{j}+R(x,y,z)\vec{k} A(x,y,z)=P(x,y,z)i+Q(x,y,z)j+R(x,y,z)k, d r ⃗ = d x i ⃗ + d y j ⃗ + d z k ⃗ \text{d}\vec{r}=\text{d}x\vec{i}+\text{d}y\vec{j}+\text{d}z\vec{k} dr=dxi+dyj+dzk.
注意:
(1)
Γ
\Gamma\,
Γ被称为积分弧段.
(2) 各曲线积分与
Γ
\,\Gamma\,
Γ的划分及点的取法无关.
(3) 若
P
(
x
,
y
,
z
)
\,P(x,y,z)
P(x,y,z)、
Q
(
x
,
y
,
z
)
Q(x,y,z)
Q(x,y,z)、
R
(
x
,
y
,
z
)
R(x,y,z)\,
R(x,y,z)在光滑曲线弧
Γ
\,\Gamma\,
Γ上连续,则对应曲线积分一定存在.
(4) 三维空间物体在变力
F
⃗
(
x
,
y
,
z
)
=
{
P
(
x
,
y
,
z
)
,
Q
(
x
,
y
,
z
)
,
R
(
x
,
y
,
z
)
}
\vec F(x,y,z)=\{P(x,y,z),Q(x,y,z),R(x,y,z)\}\,
F(x,y,z)={P(x,y,z),Q(x,y,z),R(x,y,z)}作用下沿有向曲线段的做功:
d
W
=
F
⃗
(
x
,
y
,
z
)
⋅
d
s
⃗
=
P
(
x
,
y
,
z
)
d
x
+
Q
(
x
,
y
,
z
)
d
y
+
R
(
x
,
y
,
z
)
d
z
\text{d}W=\vec{F}(x,y,z)\cdot\text{d}{\vec{s}}=P(x,y,z)\text{d}x+Q(x,y,z)\text{d}y+R(x,y,z)\text{d}z
dW=F(x,y,z)⋅ds=P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz
W
=
∫
Γ
d
W
=
∫
Γ
P
(
x
,
y
,
z
)
d
x
+
∫
Γ
Q
(
x
,
y
,
z
)
d
y
+
∫
Γ
R
(
x
,
y
,
z
)
d
z
W=\int_\Gamma\text{d}W=\int_\Gamma P(x,y,z)\text{d}x+\int_\Gamma Q(x,y,z)\text{d}y+\int_\Gamma R(x,y,z)\text{d}z
W=∫ΓdW=∫ΓP(x,y,z)dx+∫ΓQ(x,y,z)dy+∫ΓR(x,y,z)dz
2 性质
平面曲线
(1) 简单性质
∫ L − P ( x , y ) d x + Q ( x , y ) d y = − ∫ L P ( x , y ) d x + Q ( x , y ) d y \int_{L^-}P(x,y)\text{d}x+Q(x,y)\text{d}y=-\int_LP(x,y)\text{d}x+Q(x,y)\text{d}y ∫L−P(x,y)dx+Q(x,y)dy=−∫LP(x,y)dx+Q(x,y)dy ∫ L ( k 1 F 1 ⃗ ± k 2 F 2 ⃗ ) ⋅ d r ⃗ = k 1 ∫ L F 1 ⃗ ⋅ d r ⃗ + k 2 ∫ L F 2 ⃗ ⋅ d r ⃗ ( k 1 、 k 2 为 常 数 ) \int_L(k_1\vec{F_1}\pm k_2\vec{F_2})\cdot\text{d}\vec{r}=k_1\int_L\vec{F_1}\cdot\text{d}\vec{r}+k_2\int_L\vec{F_2}\cdot\text{d}\vec{r}\;\;\;(k_1、k_2为常数) ∫L(k1F1±k2F2)⋅dr=k1∫LF1⋅dr+k2∫LF2⋅dr(k1、k2为常数) ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ L 1 P ( x , y ) d x + Q ( x , y ) d y + ∫ L 2 P ( x , y ) d x + Q ( x , y ) d y ( L = L 1 + L 2 ) \int_{L}P(x,y)\text{d}x+Q(x,y)\text{d}y=\int_{L_1}P(x,y)\text{d}x+Q(x,y)\text{d}y+\int_{L_2}P(x,y)\text{d}x+Q(x,y)\text{d}y\;\;(L=L_1+L_2) ∫LP(x,y)dx+Q(x,y)dy=∫L1P(x,y)dx+Q(x,y)dy+∫L2P(x,y)dx+Q(x,y)dy(L=L1+L2)
(2) 对称奇偶性
对于第二类曲线积分 ∫ L P ( x , y ) d x \int_L P(x,y)\text{d}x\, ∫LP(x,y)dx和 ∫ L Q ( x , y ) d y \,\int_L Q(x,y)\text{d}y ∫LQ(x,y)dy:
(1) 设曲线
L
\,L\,
L关于
x
\,x\,
x轴对称 (即关于变量
y
\,y\,
y对称),其中
L
1
\,L_1\,
L1是其位于
x
\,x\,
x轴上侧的部分,则:
∫
L
P
(
x
,
y
)
d
x
=
{
0
,
P
(
x
,
−
y
)
=
P
(
x
,
y
)
,
2
∫
L
1
P
(
x
,
y
)
d
x
,
P
(
x
,
−
y
)
=
−
P
(
x
,
y
)
.
\int_LP(x,y)\text{d}x=\begin{cases}0,&P(x,-y)=P(x,y),\\ 2\int_{L_1}P(x,y)\text{d}x,&P(x,-y)=-P(x,y).\end{cases}
∫LP(x,y)dx={0,2∫L1P(x,y)dx,P(x,−y)=P(x,y),P(x,−y)=−P(x,y).
∫
L
Q
(
x
,
y
)
d
y
=
{
2
∫
L
1
Q
(
x
,
y
)
d
y
,
Q
(
x
,
−
y
)
=
Q
(
x
,
y
)
,
0
,
Q
(
x
,
−
y
)
=
−
Q
(
x
,
y
)
.
\int_LQ(x,y)\text{d}y=\begin{cases}2\int_{L_1}Q(x,y)\text{d}y,&Q(x,-y)=Q(x,y),\\ 0,&Q(x,-y)=-Q(x,y).\end{cases}
∫LQ(x,y)dy={2∫L1Q(x,y)dy,0,Q(x,−y)=Q(x,y),Q(x,−y)=−Q(x,y).
如何理解第二类曲线积分的对称性:应从做功的角度考虑. 以(1)的情况为例, P ( x , y ) P(x,y)\, P(x,y)代表水平分力, Q ( x , y ) Q(x,y)\, Q(x,y)代表竖直分力.
当 P ( − x , y ) = − P ( x , y ) \,P(-x,y)=-P(x,y)\, P(−x,y)=−P(x,y)时,代表 x \,x\, x轴上下两段水平分力方向相反,又由于曲线 L \,L\, L关于 x \,x\, x轴对称, x x\, x轴上下两段水平位移的方向也是相反的,所以做功是其中任意一段的2倍.
又比如当 Q ( x , y ) = − Q ( x , − y ) \,Q(x,y)=-Q(x,-y)\, Q(x,y)=−Q(x,−y)时,说明 x \,x\, x轴上下两段竖直分力方向相反,又由于曲线 L \,L\, L关于 x \,x\, x轴对称, x x\, x轴上下两段竖直位移是相同的,所以做功是0.
(2) 设曲线 L \,L\, L关于 y \,y\, y轴对称 (即关于变量 x \,x\, x对称),其中 L 1 \,L_1\, L1是其位于 y \,y\, y轴右侧的部分,则:
∫ L P ( x , y ) d x = { 2 ∫ L 1 P ( x , y ) d x , P ( − x , y ) = P ( x , y ) , 0 , P ( − x , y ) = − P ( x , y ) . \int_LP(x,y)\text{d}x=\begin{cases}2\int_{L_1}P(x,y)\text{d}x,&P(-x,y)=P(x,y),\\ 0,&P(-x,y)=-P(x,y).\end{cases} ∫LP(x,y)dx={2∫L1P(x,y)dx,0,P(−x,y)=P(x,y),P(−x,y)=−P(x,y). ∫ L Q ( x , y ) d y = { 0 , Q ( − x , y ) = Q ( x , y ) , 2 ∫ L 1 Q ( x , y ) d y , Q ( − x , y ) = − Q ( x , y ) . \int_LQ(x,y)\text{d}y=\begin{cases}0,&Q(-x,y)=Q(x,y),\\ 2\int_{L_1}Q(x,y)\text{d}y,&Q(-x,y)=-Q(x,y).\end{cases} ∫LQ(x,y)dy={0,2∫L1Q(x,y)dy,Q(−x,y)=Q(x,y),Q(−x,y)=−Q(x,y).
(3) 两类曲线积分之间的关系
∫ L P d x + Q d y = ∫ L ( P cos α + Q cos β ) d s \color{Purple}\int_{L}P\text{d}x+Q\text{d}y=\int_L(P\text{cos}\alpha+Q\text{cos}\beta)\text{d}s ∫LPdx+Qdy=∫L(Pcosα+Qcosβ)ds
其中 cos α \,\text{cos}\alpha cosα, cos β \text{cos}\beta\, cosβ为二维空间有向曲线弧 L \,L\, L上一点处切向量的方向余弦 (在该点处的单位切向量).
空间曲线
(1) 简单性质
∫ Γ − P ( x , y , z ) d x + Q ( x , y , z ) d y + R ( x , y , z ) d z = − ∫ Γ P ( x , y , z ) d x + Q ( x , y , z ) d y + R ( x , y , z ) d z \int_{\Gamma^-}P(x,y,z)\text{d}x+Q(x,y,z)\text{d}y+R(x,y,z)\text{d}z=-\int_\Gamma P(x,y,z)\text{d}x+Q(x,y,z)\text{d}y+R(x,y,z)\text{d}z ∫Γ−P(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz=−∫ΓP(x,y,z)dx+Q(x,y,z)dy+R(x,y,z)dz ∫ Γ ( k 1 F 1 ⃗ ± k 2 F 2 ⃗ ) ⋅ d r ⃗ = k 1 ∫ Γ F 1 ⃗ ⋅ d r ⃗ + k 2 ∫ Γ F 2 ⃗ ⋅ d r ⃗ ( k 1 、 k 2 为 常 数 ) \int_\Gamma(k_1\vec{F_1}\pm k_2\vec{F_2})\cdot\text{d}\vec{r}=k_1\int_\Gamma\vec{F_1}\cdot\text{d}\vec{r}+k_2\int_\Gamma\vec{F_2}\cdot\text{d}\vec{r}\;\;\;(k_1、k_2为常数) ∫Γ(k1F1±k2F2)⋅dr=k1∫ΓF1⋅dr+k2∫ΓF2⋅dr(k1、k2为常数) ∫ Γ P d x + Q d y + R d z = ∫ Γ 1 P d x + Q d y + R d z + ∫ Γ 2 P d x + Q d y + R d z ( Γ = Γ 1 + Γ 2 ) \int_{\Gamma}P\text{d}x+Q\text{d}y+R\text{d}z=\int_{\Gamma_1}P\text{d}x+Q\text{d}y+R\text{d}z+\int_{\Gamma_2}P\text{d}x+Q\text{d}y+R\text{d}z\;\;(\Gamma=\Gamma_1+\Gamma_2) ∫ΓPdx+Qdy+Rdz=∫Γ1Pdx+Qdy+Rdz+∫Γ2Pdx+Qdy+Rdz(Γ=Γ1+Γ2)
(2) 对称奇偶性
对于第二类曲线积分 ∫ Γ P ( x , y , z ) d x \int_\Gamma P(x,y,z)\text{d}x\, ∫ΓP(x,y,z)dx、 ∫ Γ Q ( x , y , z ) d y \,\int_\Gamma Q(x,y,z)\text{d}y\, ∫ΓQ(x,y,z)dy和 ∫ Γ R ( x , y , z ) d z \,\int_\Gamma R(x,y,z)\text{d}z ∫ΓR(x,y,z)dz:
(1) 设曲线
Γ
\,\Gamma\,
Γ关于
y
O
z
\,yOz\,
yOz面对称,其中
Γ
1
\,\Gamma_1\,
Γ1是其位于
x
\,x\,
x轴前面的部分,则:
∫
Γ
P
(
x
,
y
,
z
)
d
x
=
{
2
∫
Γ
1
P
(
x
,
y
,
z
)
d
x
,
P
(
−
x
,
y
,
z
)
=
P
(
x
,
y
,
z
)
,
0
,
P
(
−
x
,
y
,
z
)
=
−
P
(
x
,
y
,
z
)
.
\int_\Gamma P(x,y,z)\text{d}x=\begin{cases}2\int_{\Gamma_1} P(x,y,z)\text{d}x,&P(-x,y,z)=P(x,y,z),\\ 0,&P(-x,y,z)=-P(x,y,z).\end{cases}
∫ΓP(x,y,z)dx={2∫Γ1P(x,y,z)dx,0,P(−x,y,z)=P(x,y,z),P(−x,y,z)=−P(x,y,z).
∫
Γ
Q
(
x
,
y
,
z
)
d
y
=
{
0
,
Q
(
−
x
,
y
,
z
)
=
Q
(
x
,
y
,
z
)
,
2
∫
Γ
1
Q
(
x
,
y
,
z
)
d
y
,
Q
(
−
x
,
y
,
z
)
=
−
Q
(
x
,
y
,
z
)
.
\int_\Gamma Q(x,y,z)\text{d}y=\begin{cases}0,&Q(-x,y,z)=Q(x,y,z),\\ 2\int_{\Gamma_1} Q(x,y,z)\text{d}y,&Q(-x,y,z)=-Q(x,y,z).\end{cases}
∫ΓQ(x,y,z)dy={0,2∫Γ1Q(x,y,z)dy,Q(−x,y,z)=Q(x,y,z),Q(−x,y,z)=−Q(x,y,z).
∫ Γ R ( x , y , z ) d z = { 0 , R ( − x , y , z ) = R ( x , y , z ) , 2 ∫ Γ 1 R ( x , y , z ) d z , R ( − x , y , z ) = − R ( x , y , z ) . \int_\Gamma R(x,y,z)\text{d}z=\begin{cases}0,&R(-x,y,z)=R(x,y,z),\\ 2\int_{\Gamma_1} R(x,y,z)\text{d}z,&R(-x,y,z)=-R(x,y,z).\end{cases} ∫ΓR(x,y,z)dz={0,2∫Γ1R(x,y,z)dz,R(−x,y,z)=R(x,y,z),R(−x,y,z)=−R(x,y,z).
(2) 设曲线
Γ
\,\Gamma\,
Γ关于
z
O
x
\,zOx\,
zOx面对称,其中
Γ
1
\,\Gamma_1\,
Γ1是其位于
x
\,x\,
x轴右面的部分,则:
∫
Γ
P
(
x
,
y
,
z
)
d
x
=
{
0
,
P
(
x
,
−
y
,
z
)
=
P
(
x
,
y
,
z
)
,
2
∫
Γ
1
P
(
x
,
y
,
z
)
d
x
,
P
(
x
,
−
y
,
z
)
=
−
P
(
x
,
y
,
z
)
.
\int_\Gamma P(x,y,z)\text{d}x=\begin{cases}0,&P(x,-y,z)=P(x,y,z),\\ 2\int_{\Gamma_1} P(x,y,z)\text{d}x,&P(x,-y,z)=-P(x,y,z).\end{cases}
∫ΓP(x,y,z)dx={0,2∫Γ1P(x,y,z)dx,P(x,−y,z)=P(x,y,z),P(x,−y,z)=−P(x,y,z).
∫
Γ
Q
(
x
,
y
,
z
)
d
y
=
{
2
∫
Γ
1
Q
(
x
,
y
,
z
)
d
y
,
Q
(
x
,
−
y
,
z
)
=
Q
(
x
,
y
,
z
)
,
0
,
Q
(
x
,
−
y
,
z
)
=
−
Q
(
x
,
y
,
z
)
.
\int_\Gamma Q(x,y,z)\text{d}y=\begin{cases}2\int_{\Gamma_1} Q(x,y,z)\text{d}y,&Q(x,-y,z)=Q(x,y,z),\\ 0,&Q(x,-y,z)=-Q(x,y,z).\end{cases}
∫ΓQ(x,y,z)dy={2∫Γ1Q(x,y,z)dy,0,Q(x,−y,z)=Q(x,y,z),Q(x,−y,z)=−Q(x,y,z).
∫
Γ
R
(
x
,
y
,
z
)
d
z
=
{
0
,
R
(
x
,
−
y
,
z
)
=
R
(
x
,
y
,
z
)
,
2
∫
Γ
1
R
(
x
,
y
,
z
)
d
z
,
R
(
x
,
−
y
,
z
)
=
−
R
(
x
,
y
,
z
)
.
\int_\Gamma R(x,y,z)\text{d}z=\begin{cases}0,&R(x,-y,z)=R(x,y,z),\\ 2\int_{\Gamma_1} R(x,y,z)\text{d}z,&R(x,-y,z)=-R(x,y,z).\end{cases}
∫ΓR(x,y,z)dz={0,2∫Γ1R(x,y,z)dz,R(x,−y,z)=R(x,y,z),R(x,−y,z)=−R(x,y,z).
(3) 设曲线
Γ
\,\Gamma\,
Γ关于
x
O
y
\,xOy\,
xOy面对称,其中
Γ
1
\,\Gamma_1\,
Γ1是其位于
x
\,x\,
x轴上面的部分,则:
∫
Γ
P
(
x
,
y
,
z
)
d
x
=
{
0
,
P
(
x
,
y
,
−
z
)
=
P
(
x
,
y
,
z
)
,
2
∫
Γ
1
P
(
x
,
y
,
z
)
d
x
,
P
(
x
,
y
,
−
z
)
=
−
P
(
x
,
y
,
z
)
.
\int_\Gamma P(x,y,z)\text{d}x=\begin{cases}0,&P(x,y,-z)=P(x,y,z),\\ 2\int_{\Gamma_1} P(x,y,z)\text{d}x,&P(x,y,-z)=-P(x,y,z).\end{cases}
∫ΓP(x,y,z)dx={0,2∫Γ1P(x,y,z)dx,P(x,y,−z)=P(x,y,z),P(x,y,−z)=−P(x,y,z).
∫
Γ
Q
(
x
,
y
,
z
)
d
y
=
{
0
,
Q
(
x
,
y
,
−
z
)
=
Q
(
x
,
y
,
z
)
,
2
∫
Γ
1
Q
(
x
,
y
,
z
)
d
y
,
Q
(
x
,
y
,
−
z
)
=
−
Q
(
x
,
y
,
z
)
.
\int_\Gamma Q(x,y,z)\text{d}y=\begin{cases}0,&Q(x,y,-z)=Q(x,y,z),\\ 2\int_{\Gamma_1} Q(x,y,z)\text{d}y,&Q(x,y,-z)=-Q(x,y,z).\end{cases}
∫ΓQ(x,y,z)dy={0,2∫Γ1Q(x,y,z)dy,Q(x,y,−z)=Q(x,y,z),Q(x,y,−z)=−Q(x,y,z).
∫
Γ
R
(
x
,
y
,
z
)
d
z
=
{
2
∫
Γ
1
R
(
x
,
y
,
z
)
d
z
,
R
(
x
,
y
,
−
z
)
=
R
(
x
,
y
,
z
)
,
0
,
R
(
x
,
y
,
−
z
)
=
−
R
(
x
,
y
,
z
)
.
\int_\Gamma R(x,y,z)\text{d}z=\begin{cases}2\int_{\Gamma_1} R(x,y,z)\text{d}z,&R(x,y,-z)=R(x,y,z),\\ 0,&R(x,y,-z)=-R(x,y,z).\end{cases}
∫ΓR(x,y,z)dz={2∫Γ1R(x,y,z)dz,0,R(x,y,−z)=R(x,y,z),R(x,y,−z)=−R(x,y,z).
如何理解:和二维思路一样,可以通过做功来考虑.
(3) 两类曲线积分之间的关系
∫ Γ P d x + Q d y + R d z = ∫ Γ ( P cos α + Q cos β + R cos γ ) d s \color{Purple}\int_{\Gamma}P\text{d}x+Q\text{d}y+R\text{d}z=\int_\Gamma(P\text{cos}\alpha+Q\text{cos}\beta+R\text{cos}\gamma)\text{d}s ∫ΓPdx+Qdy+Rdz=∫Γ(Pcosα+Qcosβ+Rcosγ)ds
其中 cos α \,\text{cos}\alpha cosα, cos β \text{cos}\beta\, cosβ, cos γ \text{cos}\gamma\, cosγ为三维空间有向曲线弧 Γ \,\Gamma\, Γ上一点处切向量的方向余弦 (在该点处的单位切向量).
4 平面曲线计算方法
(一) 定积分法
直角坐标
设 L : y = φ ( x ) ( \,L:y=\varphi(x)\,( L:y=φ(x)(起点对应 x = a \,x=a x=a,终点对应 x = b \,x=b x=b),则 ∫ L P ( x , y ) d x + Q ( x , y ) d y = ∫ a b { P [ x , φ ( x ) ] + Q [ x , φ ( x ) ] φ ′ ( x ) } d x \color{Purple}\int_{L}P(x,y)\text{d}x+Q(x,y)\text{d}y=\int^b_a\big\{P[x,\varphi(x)]+Q[x,\varphi(x)]\varphi'(x)\big\}\text{d}x ∫LP(x,y)dx+Q(x,y)dy=∫ab{P[x,φ(x)]+Q[x,φ(x)]φ′(x)}dx
参数方程
设
L
:
{
x
=
φ
(
t
)
y
=
ψ
(
t
)
(
\,L:\begin{cases}x=\varphi(t)\\y=\psi(t)\end{cases}\,(
L:{x=φ(t)y=ψ(t)(起点对应
t
=
α
\,t=\alpha
t=α,终点对应
t
=
β
\,t=\beta
t=β),则
∫
L
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
=
∫
α
β
{
P
[
φ
(
t
)
,
ψ
(
t
)
]
φ
′
(
t
)
+
Q
[
φ
(
t
)
,
ψ
(
t
)
]
ψ
′
(
t
)
}
d
t
\color{Purple}\int_{L}P(x,y)\text{d}x+Q(x,y)\text{d}y=\int^\beta_\alpha\big\{P[\varphi(t),\psi(t)]\varphi'(t)+Q[\varphi(t),\psi(t)]\psi'(t)\big\}\text{d}t
∫LP(x,y)dx+Q(x,y)dy=∫αβ{P[φ(t),ψ(t)]φ′(t)+Q[φ(t),ψ(t)]ψ′(t)}dt
注意:第二类曲线积分只与起点终点的位置有关(做功),起点和终点的大小关系是无关紧要的.
(二) 二重积分法 — 格林公式 ( Green \text{Green} Green)
定理
Th
.
(
Green
)
\text{Th}. (\text{Green})
Th.(Green) 设闭区域
D
\,D\,
D为平面单连通或多连通区域,
L
\,L\,
L为
D
\,D\,
D取正向的边界曲线.
P
(
x
,
y
)
P(x,y)
P(x,y),
Q
(
x
,
y
)
Q(x,y)\,
Q(x,y)在
D
\,D\,
D上具有一阶连续偏导数,则有
∮
L
P
d
x
+
Q
d
y
=
∬
D
(
∂
Q
∂
x
−
∂
P
∂
y
)
d
x
d
y
\color{Purple}\oint_LP\text{d}x+Q\text{d}y=\iint\limits_D\bigg(\frac{\partial{Q}}{\partial{x}}-\frac{\partial{P}}{\partial{y}}\bigg)\text{d}x\text{d}y
∮LPdx+Qdy=D∬(∂x∂Q−∂y∂P)dxdy
Green \text{Green}\, Green的条件
(1) 闭区域:
若边界曲线
L
\,L\,
L不封闭,则需要补充曲线段使之封闭,才可使用
Green
\,\text{Green}
Green.
(2) 单连通区域与多连通区域:
单连通区域:内部没有“洞”的区域. 单连通区域以边界曲线逆时针方向为正方向.
多连通区域:内部有“洞”的区域. 多连通区域以外边界曲线逆时针、内边界曲线顺时针为正方向.
若
L
\,L\,
L为
D
\,D\,
D的负向边界,则
∮
L
P
d
x
+
Q
d
y
=
−
∬
D
(
∂
Q
∂
x
−
∂
P
∂
y
)
d
x
d
y
\oint_LP\text{d}x+Q\text{d}y={\color{Red}\bm{-}}\iint\limits_D\bigg(\frac{\partial{Q}}{\partial{x}}-\frac{\partial{P}}{\partial{y}}\bigg)\text{d}x\text{d}y
∮LPdx+Qdy=−D∬(∂x∂Q−∂y∂P)dxdy
(3) 连续可偏导:
如果区域内存在不连续可偏导的点 (称为奇点),就不能直接使用
Green
\,\text{Green}
Green.
逆用 Green \,\text{Green} Green:
∬ D ( ∂ Q ∂ x − ∂ P ∂ y ) d x d y = ∮ L P d x + Q d y \iint\limits_D\bigg(\frac{\partial{Q}}{\partial{x}}-\frac{\partial{P}}{\partial{y}}\bigg)\text{d}x\text{d}y=\oint_LP\text{d}x+Q\text{d}y D∬(∂x∂Q−∂y∂P)dxdy=∮LPdx+Qdy
Green \text{Green}\, Green将第二类曲线积分转化为二重积分计算.
但有的题目需要反过来将二重积分转换为易算的第二类曲线积分求解. 读者要留心.
(三) 路径无关条件
Th . \text{Th}. Th. 设 D \,D\, D为单连通区域,函数 P ( x , y ) \,P(x,y) P(x,y), Q ( x , y ) Q(x,y)\, Q(x,y)在 D \,D\, D内具有一阶连续偏导数,则以下几个命题等价:
1 (路径无关) 曲线积分 ∫ L P d x + Q d y \,\int_LP\text{d}x+Q\text{d}y\, ∫LPdx+Qdy与路径无关 (只与起点、终点有关);
2 (内部闭曲线积分都为0) 对区域
D
\,D\,
D内任意闭曲线
C
\,C\,
C,有
∮
C
P
d
x
+
Q
d
y
=
0
\oint_CP\text{d}x+Q\text{}dy=0
∮CPdx+Qdy=0
3 (柯西-黎曼条件) 区域
D
\,D\,
D内恒有
∂
Q
∂
x
=
∂
P
∂
y
\color{Purple}\frac{\partial{Q}}{\partial{x}}=\frac{\partial{P}}{\partial{y}}
∂x∂Q=∂y∂P
4 (存在全微分) 在区域 D \,D\, D内, ∃ u ( x , y ) \exist\,u(x,y) ∃u(x,y),使得 d u = P d x + Q d y \,\text{d}u=P\text{d}x+Q\text{d}y du=Pdx+Qdy.
5 (全微分方程) 微分方程 P d x + Q d y = 0 \,P\text{d}x+Q\text{d}y=0\, Pdx+Qdy=0为全微分方程,其通解为: u ( x , y ) = C \color{Purple}u(x,y)=C u(x,y)=C.
说明:
(1) 注意条件是单连通区域.
(2) 第1点和第2点是路径无关定义的等价说法.
(既然路径无关,任选两条路径积分是相同的. 将其中一条取相反方向,积分就为0,也就是对一条闭曲线积分为0)
(3) 最关键的判别法为:
∂
Q
∂
x
=
∂
P
∂
y
\frac{\partial{Q}}{\partial{x}}=\frac{\partial{P}}{\partial{y}}
∂x∂Q=∂y∂P.
(4) 路径无关的路径选取:确定好起点终点,按理经过的路径都能计算,但不同的路径计算量可能大不一样:
a. 最常用的:
(
x
0
,
y
0
)
→
(
x
1
,
y
0
)
→
(
x
1
,
y
)
(x_0,y_0)\to (x_1,y_0) \to (x_1,y)
(x0,y0)→(x1,y0)→(x1,y)
b. 积分中的复合抽象函数,也可能是路径选择的提示,因为这样就能方便使用替代法.
如:
∫ L 1 + y 2 f ( x y ) y d x + x y 2 [ y 2 f ( x y ) − 1 ] d y \int_L\frac{1+y^2f(xy)}{y}\text{d}x+\frac{x}{y^2}[y^2f(xy)-1]\text{d}y ∫Ly1+y2f(xy)dx+y2x[y2f(xy)−1]dy
其中 L \,L\, L是从 A ( 3 , 2 3 ) \,A(3,\frac{2}{3})\, A(3,32)到 B ( 1 , 2 ) \,B(1,2)\, B(1,2)的直线段.
通过计算 P \,P P、 Q Q\, Q的偏导数可确定这是一个路径无关问题.
此题最合适的路径就应该是 x y = 2 \,xy=2\, xy=2.
(5) 原函数求法:
u
(
x
,
y
)
=
∫
(
x
0
,
y
0
)
(
x
,
y
)
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
=
∫
x
0
x
P
(
x
,
y
0
)
d
x
+
∫
y
0
y
Q
(
x
,
y
)
d
y
u(x,y)=\int^{(x,y)}_{(x_0,y_0)}P(x,y)\text{d}x+Q(x,y)\text{d}y=\int^x_{x_0}P(x,y_0)\text{d}x+\int^y_{y_0}Q(x,y)\text{d}y
u(x,y)=∫(x0,y0)(x,y)P(x,y)dx+Q(x,y)dy=∫x0xP(x,y0)dx+∫y0yQ(x,y)dy
(四) Green \text{Green}\, Green和路径无关问题做法总结
(1) 曲线封闭且无奇点
特征:题目给的曲线是闭曲线,并且没有分母 (考试奇点通常出在分母为 ( 0 , 0 ) \,(0,\,0)\, (0,0)的情况).
思路:直接使用 Green \,\text{Green} Green.
(2) 曲线封闭但内部有奇点
特征:题目中的曲线是闭曲线,分母存在奇点. 题目通常还满足除奇点外:
∂
Q
∂
x
=
∂
P
∂
y
\color{Blue}\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}
∂x∂Q=∂y∂P
思路:使用挖洞法,换曲线使用 Green \,\text{Green}\, Green计算.
挖洞法 ("挖去"
D
\,D\,
D中的奇点,再使用
Green
\,\text{Green}
Green) 具体做法如下:
1
o
1^o\;
1o作闭合曲线
L
0
\,L_0
L0,
L
0
L_0\,
L0必须保证在
L
\,L\,
L内,且方向与
L
\,L\,
L同向.

2
o
2^o\;
2o于是有:
∮
L
=
∮
L
+
L
0
−
+
∮
L
0
\oint_L={\color{Blue}\oint_{L+L_0^-}}+{\color{Red}\oint_{L_0}}
∮L=∮L+L0−+∮L0
3 o 3^o\; 3o ∮ L + L 0 − \color{Blue}\oint_{L+L_0^-}\, ∮L+L0−在积分区域 D 1 \,D_1\, D1上使用 Green \,\text{Green}\, Green求解.
如果题目满足 ∂ Q ∂ x = ∂ P ∂ y \,\color{Blue}\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} ∂x∂Q=∂y∂P,则
∮
L
+
L
0
−
=
0
{\color{Blue}\oint_{L+L_0^-}}=0
∮L+L0−=0 所以:
∮
L
=
∮
L
0
\oint_L={\color{Red}\oint_{L_0}}
∮L=∮L0
于是计算
L
\,L\,
L的曲线积分,就转换为计算
L
0
\,L_0\,
L0的曲线积分,所以也常把这种方法称为换曲线.
4 o 4^o\; 4o ∮ L 0 {\color{Red}\oint_{L_0}}\, ∮L0使用 Green \,\text{Green}\, Green或定积分法求解.
说明:
(1) 一般题目奇点出在分母上(
(
0
,
0
)
\,(0,0)\,
(0,0)点使分式没有意义),比如:
∮
L
x
d
y
−
y
d
x
x
2
+
4
y
2
\oint_L\frac{x\text{d}y-y\text{d}x}{x^2+4y^2}
∮Lx2+4y2xdy−ydx (2) 如果不能确定奇点是否在
D
\,D\,
D内,就要作如下的分类讨论:
O
(
0
,
0
)
∉
D
\,O(0,0)\notin D\,
O(0,0)∈/D,直接使用
Green
\,\text{Green}\,
Green求解.
O
(
0
,
0
)
∈
D
\,O(0,0)\in D\,
O(0,0)∈D,使用挖洞法换曲线求.
(3) 为了方便后面使用替代法简化计算,
L
0
L_0\,
L0的选取应该参照分母,并且方向与外侧曲线一致 (这纯粹是为了计算方便).
比如观察说明的第一点中的曲线积分,其 L 0 \,L_0\, L0就应设为: L 0 : x 2 + 4 y 2 = r 2 ( r > 0 , L 0 L_0:x^2+4y^2=r^2\;(r>0,L_0\, L0:x2+4y2=r2(r>0,L0在 L \,L\, L内,取逆时针方向),这样在计算 ∮ L 0 \,\oint_{L_0}\, ∮L0时分母就能直接替换为 r 2 \,r^2 r2,达到消去分母的目的.
下面以一个例题演示计算过程.
例:计算 ∮ L x d y − y d x x 2 + y 2 \oint_L\frac{x\text{d}y-y\text{d}x}{x^2+y^2} ∮Lx2+y2xdy−ydx,其中 L : x 2 9 + y 2 4 = 1 \,L:\frac{x^2}{9}+\frac{y^2}{4}=1 L:9x2+4y2=1,取逆时针方向.
解:
1 o 1^o\; 1o找出 P \,P P、 Q Q Q,并确定二者偏导数相等:
P = − y x 2 + y 2 , Q = x x 2 + y 2 P=\frac{-y}{x^2+y^2},Q=\frac{x}{x^2+y^2} P=x2+y2−y,Q=x2+y2x ∂ Q ∂ x = ∂ P ∂ y = y 2 − x 2 ( x 2 + y 2 ) 2 ( ( x , y ) ≠ ( 0 , 0 ) ) \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}=\frac{y^2-x^2}{(x^2+y^2)^2}\;\big({\color{Purple}(x,y)\neq(0,0)}\big) ∂x∂Q=∂y∂P=(x2+y2)2y2−x2((x,y)=(0,0)) 2 o 2^o\; 2o作内侧闭合曲线 L 0 \,L_0\, L0,并标明区域:
令 L 0 : x 2 + y 2 = r 2 ( r > 0 \,L_0:x^2+y^2=r^2\;(r>0 L0:x2+y2=r2(r>0, L 0 L_0\, L0在 L \,L\, L内, L 0 \,L_0\, L0取逆时针方向).
设 L 0 \,L_0\, L0与 L \,L\, L所围成的多连通区域为 D 1 \,D_1 D1, L 0 L_0\, L0所围成的单连通区域为 D 2 \,D_2 D2.3 o 3^o\; 3o计算:
由 ∮ L + L 0 − x d y − y d x x 2 + y 2 = ∬ D 1 0 d x d y = 0 得 由\oint_{L+L_0^-}\frac{x\text{d}y-y\text{d}x}{x^2+y^2}=\iint\limits_{D_1}0\text{d}x\text{d}y=0\,得 由∮L+L0−x2+y2xdy−ydx=D1∬0dxdy=0得 I = ∮ L x d y − y d x x 2 + y 2 = ∮ L 0 x d y − y d x x 2 + y 2 = 1 r 2 ∫ L 0 x d y − y d x I=\oint_L\frac{x\text{d}y-y\text{d}x}{x^2+y^2}=\oint_{L_0}\frac{x\text{d}y-y\text{d}x}{x^2+y^2}=\frac{1}{r^2}\int_{L_0}x\text{d}y-y\text{d}x I=∮Lx2+y2xdy−ydx=∮L0x2+y2xdy−ydx=r21∫L0xdy−ydx = 2 r 2 ∬ D 2 d x d y = 2 r 2 ⋅ π r 2 = 2 π =\frac{2}{r^2}\iint\limits_{D_2}\text{d}x\text{d}y=\frac{2}{r^2}\cdot\pi r^2=2\pi =r22D2∬dxdy=r22⋅πr2=2π
(3) 曲线不封闭且 ∂ Q ∂ x = ∂ P ∂ y \,\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} ∂x∂Q=∂y∂P
特征:题目给的曲线不是闭曲线,并且题目还满足:
∂
Q
∂
x
=
∂
P
∂
y
\color{Blue}\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}
∂x∂Q=∂y∂P
思路:换路径,使积分容易计算. (这个问题属于路径无关问题).
(1) 被积函数无分母:
a. 通用做法:起点
(
x
0
,
y
0
)
(x_0,y_0)
(x0,y0),终点
(
x
1
,
y
1
)
\,(x_1,y_1)
(x1,y1),按如下折线积分计算:
∫
L
P
d
x
+
Q
d
y
=
∫
(
x
0
,
y
0
)
(
x
1
,
y
1
)
P
d
x
+
Q
d
y
=
∫
x
0
x
1
P
(
x
,
y
0
)
d
x
+
∫
y
0
y
1
Q
(
x
1
,
y
)
d
y
\int_LP\text{d}x+Q\text{d}y=\int^{(x_1,y_1)}_{(x_0,y_0)}P\text{d}x+Q\text{d}y=\int^{x_1}_{x_0}P(x,y_0)\text{d}x+\int_{y_0}^{y_1} Q(x_1,y)\text{d}y
∫LPdx+Qdy=∫(x0,y0)(x1,y1)Pdx+Qdy=∫x0x1P(x,y0)dx+∫y0y1Q(x1,y)dy
b. 有的题目也可以用凑微法计算,但不太容易看出:
∫
L
P
d
x
+
Q
d
y
=
∫
(
x
0
,
y
0
)
(
x
1
,
y
1
)
P
d
x
+
Q
d
y
=
u
(
x
,
y
)
∣
(
x
0
,
y
0
)
(
x
1
,
y
1
)
=
u
(
x
1
,
y
1
)
−
u
(
x
0
,
y
0
)
{\int_LP\text{d}x+Q\text{d}y}=\int^{(x_1,y_1)}_{(x_0,y_0)}P\text{d}x+Q\text{d}y=u(x,y)\bigg|^{(x_1,y_1)}_{(x_0,y_0)}={u(x_1,y_1)-u(x_0,y_0)}
∫LPdx+Qdy=∫(x0,y0)(x1,y1)Pdx+Qdy=u(x,y)∣∣∣∣(x0,y0)(x1,y1)=u(x1,y1)−u(x0,y0)
例如:
∫ ( 0 , 0 ) ( 1 , 1 ) x d x + y d y = 1 2 ( x 2 + y 2 ) ∣ ( 0 , 0 ) ( 1 , 1 ) = 1 \int^{(1,1)}_{(0,0)}x\text{d}x+y\text{d}y=\frac{1}{2}(x^2+y^2)\bigg|^{(1,1)}_{(0,0)}=1 ∫(0,0)(1,1)xdx+ydy=21(x2+y2)∣∣∣∣(0,0)(1,1)=1 ∫ ( 0 , 0 ) ( 1 , 1 ) x y 2 d x + x 2 y d y = 1 2 x 2 y 2 ∣ ( 0 , 0 ) ( 1 , 1 ) = 1 2 \int^{(1,1)}_{(0,0)}xy^2\text{d}x+x^2y\text{d}y=\frac{1}{2}x^2y^2\bigg|^{(1,1)}_{(0,0)}=\frac{1}{2} ∫(0,0)(1,1)xy2dx+x2ydy=21x2y2∣∣∣∣(0,0)(1,1)=21
(2) 被积函数有分母:选分母作为路径.
原理: ∂ Q ∂ x = ∂ P ∂ y ⇒ D \frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}\Rightarrow D\, ∂x∂Q=∂y∂P⇒D内沿任意分段光滑闭曲线都有 ∮ L P d x + Q d y = 0 \oint_LP\text{d}x+Q\text{d}y=0 ∮LPdx+Qdy=0
由: ∮ L 1 + l 0 P d x + Q d y = 0 , ∮ L 2 + l 0 P d x + Q d y = 0 \oint_{L_1+l_0}P\text{d}x+Q\text{d}y=0,\oint_{L_2+l_0}P\text{d}x+Q\text{d}y=0 ∮L1+l0Pdx+Qdy=0,∮L2+l0Pdx+Qdy=0
于是:
∮
L
1
P
d
x
+
Q
d
y
=
∮
L
2
P
d
x
+
Q
d
y
\oint_{\color{Blue}L_1}P\text{d}x+Q\text{d}y=\oint_{\color{Red}L_2}P\text{d}x+Q\text{d}y
∮L1Pdx+Qdy=∮L2Pdx+Qdy
(4) 曲线不封闭且 ∂ Q ∂ x ≠ ∂ P ∂ y \,\frac{\partial Q}{\partial x}\neq\frac{\partial P}{\partial y} ∂x∂Q=∂y∂P
特征:题目给的曲线不是闭曲线,并且题目中:
∂
Q
∂
x
≠
∂
P
∂
y
\frac{\partial Q}{\partial x}\neq\frac{\partial P}{\partial y}
∂x∂Q=∂y∂P
思路:补线,将曲线补为封闭曲线 (添加一条或若干条曲线),再使用 Green \,\text{Green} Green.
假设曲线
L
A
B
\,L_{AB}\,
LAB就是一条不封闭的曲线,通过补一条线
C
B
A
\,C_{BA}\,
CBA即可构成封闭曲线,则:
∫
L
A
B
P
d
x
+
Q
d
y
=
∫
L
A
B
+
C
B
A
P
d
x
+
Q
d
y
+
∫
C
A
B
P
d
x
+
Q
d
y
\int_{L_{AB}}P\text{d}x+Q\text{d}y=\int_{L_{AB}+C_{BA}}P\text{d}x+Q\text{d}y+\int_{C_{AB}}P\text{d}x+Q\text{d}y
∫LABPdx+Qdy=∫LAB+CBAPdx+Qdy+∫CABPdx+Qdy
=
±
∬
D
(
∂
Q
∂
x
−
∂
P
∂
y
)
d
σ
+
∫
C
A
B
P
d
x
+
Q
d
y
=\pm\iint\limits_D{\bigg(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}}\bigg)\text{d}\sigma+\int_{C_{AB}}P\text{d}x+Q\text{d}y
=±D∬(∂x∂Q−∂y∂P)dσ+∫CABPdx+Qdy
注意:如果曲线本身很好计算,当然直接使用定积分法也可以.
(5) 路径无关问题的两种类型
型一: P P P、 Q Q\, Q已知,求 ∫ L \,\int_L\, ∫L或 u \,u u
特征:题目中
P
\,P
P、
Q
Q\,
Q已知,验证可知
∂
Q
∂
x
=
∂
P
∂
y
\,\frac{\partial{Q}}{\partial{x}}=\frac{\partial{P}}{\partial{y}}
∂x∂Q=∂y∂P.
思路:由
∂
Q
∂
x
=
∂
P
∂
y
\,\frac{\partial{Q}}{\partial{x}}=\frac{\partial{P}}{\partial{y}}
∂x∂Q=∂y∂P,其他路径条件都满足.
型二: P P P、 Q Q\, Q含未知函数或参数,求 ∫ L \,\int_L\, ∫L或 u \,u u
特征:题目中
P
P
P、
Q
Q\,
Q中含未知函数或参数,题目中含路径无关条件.
思路:想尽办法找其他路径无关条件推知
∂
Q
∂
x
=
∂
P
∂
y
\,\frac{\partial{Q}}{\partial{x}}=\frac{\partial{P}}{\partial{y}}
∂x∂Q=∂y∂P,解出
P
\,P
P、
Q
Q\,
Q中的函数或参数,再求
∫
L
\,\int_L\,
∫L或
u
\,u
u.
(6) 求 u ( x , y ) \,u(x,y)\, u(x,y)的方法
常规方法:
u
(
x
,
y
)
=
∫
(
x
0
,
y
0
)
(
x
,
y
)
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
u(x,y)=\int^{(x,y)}_{(x_0,y_0)}P(x,y)\text{d}x+Q(x,y)\text{d}y
u(x,y)=∫(x0,y0)(x,y)P(x,y)dx+Q(x,y)dy 其中:
∫
(
x
0
,
y
0
)
(
x
,
y
)
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
=
∫
x
0
x
P
(
x
,
y
0
)
d
x
+
∫
y
0
y
Q
(
x
,
y
)
d
y
\int^{(x,y)}_{(x_0,y_0)}P(x,y)\text{d}x+Q(x,y)\text{d}y=\int^{x}_{x_0}P(x,y_0)\text{d}x+\int_{y_0}^{y} Q(x,y)\text{d}y
∫(x0,y0)(x,y)P(x,y)dx+Q(x,y)dy=∫x0xP(x,y0)dx+∫y0yQ(x,y)dy 或
∫
(
x
0
,
y
0
)
(
x
,
y
)
P
(
x
,
y
)
d
x
+
Q
(
x
,
y
)
d
y
=
∫
x
0
x
P
(
x
,
y
)
d
x
+
∫
y
0
y
Q
(
x
0
,
y
)
d
y
\int^{(x,y)}_{(x_0,y_0)}P(x,y)\text{d}x+Q(x,y)\text{d}y=\int^{x}_{x_0}P(x,y)\text{d}x+\int_{y_0}^{y} Q(x_0,y)\text{d}y
∫(x0,y0)(x,y)P(x,y)dx+Q(x,y)dy=∫x0xP(x,y)dx+∫y0yQ(x0,y)dy
凑微法:
(
e
x
sin
y
−
x
y
2
)
d
x
+
(
e
x
cos
y
−
x
2
y
+
1
)
d
y
(e^x\text{sin}y-xy^2)\text{d}x+(e^x\text{cos}y-x^2y+1)\text{d}y
(exsiny−xy2)dx+(excosy−x2y+1)dy
=
e
x
sin
y
d
x
+
e
x
cos
y
d
y
−
(
x
y
2
d
x
+
x
2
y
d
y
)
+
d
y
=e^x\text{sin}y\text{d}x+e^x\text{cos}y\text{d}y-(xy^2\text{d}x+x^2y\text{d}y)+\text{d}y
=exsinydx+excosydy−(xy2dx+x2ydy)+dy
=
d
(
e
x
sin
y
−
1
2
x
2
y
2
+
y
)
=\text{d}(e^x\text{sin}y-\frac{1}{2}x^2y^2+y)
=d(exsiny−21x2y2+y)
(五) 计算思路总结
步骤:
step 1:绘制曲线.
step 2:检查被积函数是否可以使用对称奇偶性、替代法,简化积分式.
step 3:识别题目类型
(1) 曲线不封闭:
若曲线很好计算 (直线段、抛物线段等),直接选用一种定积分法求解;
若曲线不好计算:
令
P
=
.
.
.
\,P=...
P=...、
Q
=
.
.
.
Q=...
Q=...,并求偏导数.
若
∂
Q
∂
x
=
∂
P
∂
y
\,\frac{\partial{Q}}{\partial{x}}=\frac{\partial{P}}{\partial{y}}
∂x∂Q=∂y∂P,换简单路径计算.
若
∂
Q
∂
x
≠
∂
P
∂
y
\,\frac{\partial{Q}}{\partial{x}}\neq\frac{\partial{P}}{\partial{y}}
∂x∂Q=∂y∂P,补线计算.
(2) 曲线封闭:
令
P
=
.
.
.
\,P=...
P=...、
Q
=
.
.
.
Q=...
Q=...,并求偏导数.
若曲线所围区域内无奇点,直接使用
Green
\,\text{Green}\,
Green计算;
若曲线所围区域内有奇点,挖洞法换曲线计算.
对被积函数的项进行分组:
有的题目需要根据被积函数不同项之间的相似性 (比如分母一样) 分组进行考虑:
I = ∮ L [ y ( 2 − x ) 2 + y 2 + y ( 2 + x ) 2 + y 2 ] d x + [ 2 − x ( 2 − x ) 2 + y 2 − 2 + x ( 2 + x ) 2 + y 2 ] d y I=\oint_L\bigg[\frac{y}{(2-x)^2+y^2}+\frac{y}{(2+x)^2+y^2}\bigg]\text{d}x+\bigg[\frac{2-x}{(2-x)^2+y^2}-\frac{2+x}{(2+x)^2+y^2}\bigg]\text{d}y I=∮L[(2−x)2+y2y+(2+x)2+y2y]dx+[(2−x)2+y22−x−(2+x)2+y22+x]dy = ∮ L y d x ( 2 − x ) 2 + y 2 + ( 2 − x ) d y ( 2 − x ) 2 + y 2 + ∮ L y d x ( 2 + x ) 2 + y 2 − ( 2 + x ) d y ( 2 + x ) 2 + y 2 =\oint_L\frac{y\text{d}x}{(2-x)^2+y^2}+\frac{(2-x)\text{d}y}{(2-x)^2+y^2}+\oint_L\frac{y\text{d}x}{(2+x)^2+y^2}-\frac{(2+x)\text{d}y}{(2+x)^2+y^2} =∮L(2−x)2+y2ydx+(2−x)2+y2(2−x)dy+∮L(2+x)2+y2ydx−(2+x)2+y2(2+x)dy = I 1 + I 2 =I_1+I_2 =I1+I2
5 空间曲线计算方法
(一) 定积分法
设
L
:
{
x
=
φ
(
t
)
y
=
ψ
(
t
)
z
=
ω
(
t
)
(
\,L:\begin{cases}x=\varphi(t)\\ y=\psi(t)\\ z=\omega(t) \end{cases}\,(
L:⎩⎪⎨⎪⎧x=φ(t)y=ψ(t)z=ω(t)(起点对应
t
=
α
\,t=\alpha
t=α,终点对应
t
=
β
\,t=\beta
t=β),则
∫
L
P
d
x
+
Q
d
y
+
R
d
z
=
∫
α
β
{
P
[
φ
(
t
)
,
ψ
(
t
)
,
ω
(
t
)
]
φ
′
(
t
)
+
Q
[
φ
(
t
)
,
ψ
(
t
)
,
ω
(
t
)
]
ψ
′
(
t
)
+
R
[
φ
(
t
)
,
ψ
(
t
)
,
ω
(
t
)
]
ω
′
(
t
)
}
d
t
\color{Purple}\int_{L}P\text{d}x+Q\text{d}y+R\text{d}z=\int^\beta_\alpha\big\{P[\varphi(t),\psi(t),\omega(t)]\varphi'(t)+Q[\varphi(t),\psi(t),\omega(t)]\psi'(t)+R[\varphi(t),\psi(t),\omega(t)]\omega'(t)\big\}\text{d}t
∫LPdx+Qdy+Rdz=∫αβ{P[φ(t),ψ(t),ω(t)]φ′(t)+Q[φ(t),ψ(t),ω(t)]ψ′(t)+R[φ(t),ψ(t),ω(t)]ω′(t)}dt
说明:在参数方程简单或曲线不在同一平面的情况用定积分法. 曲线若在同一平面,且为闭曲线,则应该考虑使用下面的 Stokes \,\text{Stokes} Stokes.
(二) 斯托克斯公式 ( Stokes \text{Stokes} Stokes)
Th . ( Stokes ) \text{Th}.(\text{Stokes}) Th.(Stokes) 设 Σ \,\Sigma\, Σ为有侧有限的光滑曲面, Γ \Gamma\, Γ为其边界, Σ \Sigma\, Σ的侧与 Γ \,\Gamma\, Γ的方向按右手准则确定,函数 P ( x , y , z ) \,P(x,y,z) P(x,y,z), Q ( x , y , z ) Q(x,y,z) Q(x,y,z), R ( x , y , z ) R(x,y,z)\, R(x,y,z)在有侧曲面 Σ \,\Sigma\, Σ上连续可偏导,则有
∮ Γ P d x + Q d y + R d z = ∬ Σ ∣ d y d z d z d x d x d y ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ = ∬ Σ ∣ cos α cos β cos γ ∂ ∂ x ∂ ∂ y ∂ ∂ z P Q R ∣ d S \color{Purple}\oint_\Gamma P\text{d}x+Q\text{d}y+R\text{d}z=\iint\limits_\Sigma\begin{vmatrix} \text{d}y\text{d}z &\text{d}z\text{d}x & \text{d}x\text{d}y \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z}\\ P& Q&R \end{vmatrix}=\iint\limits_\Sigma\begin{vmatrix} \text{cos}\alpha &\text{cos}\beta &\text{cos}\gamma \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z}\\ P& Q&R \end{vmatrix}\text{d}S ∮ΓPdx+Qdy+Rdz=Σ∬∣∣∣∣∣∣dydz∂x∂Pdzdx∂y∂Qdxdy∂z∂R∣∣∣∣∣∣=Σ∬∣∣∣∣∣∣cosα∂x∂Pcosβ∂y∂Qcosγ∂z∂R∣∣∣∣∣∣dS
说明:
(1) 关于
Stokes
\,\text{Stokes}\,
Stokes右侧两个公式的选用:前一个是第二类曲面积分形式,后一个是第一类曲面积分形式(通常用这个).
(2) 只有曲线封闭且在同一平面上的时候才可使用
Stokes
\,\text{Stokes}
Stokes.
(3) 公式成立与绷在
Γ
\,\Gamma\,
Γ上的曲面
Σ
\,\Sigma\,
Σ大小、形状无关,可任意选取,一般就选
Γ
\,\Gamma\,
Γ围成的平面单侧曲面最简单.
(4) 选取好曲面一定要注明取哪一侧和范围.
(5) 公式中的
cos
α
\,\text{cos}\alpha
cosα、
cos
β
\text{cos}\beta
cosβ、
cos
γ
\text{cos}\gamma\,
cosγ组成的向量
{
cos
α
,
cos
β
,
cos
γ
}
\,\{\text{cos}\alpha,\text{cos}\beta,\text{cos}\gamma\}\,
{cosα,cosβ,cosγ}是
Σ
\,\Sigma\,
Σ上一点法向量的方向余弦 (就是单位法向量). 计算方向余弦一定要注意方向!
例. 计算曲线积分:
∮ L y d x + 2 x d y + z d z , \oint_Ly\text{d}x+2x\text{d}y+z\text{d}z, ∮Lydx+2xdy+zdz,其中 L : { x 2 + 4 y 2 = 4 , x − y − z + 1 = 0 , \,L:\begin{cases}x^2+4y^2=4,\\x-y-z+1=0,\end{cases}\, L:{x2+4y2=4,x−y−z+1=0,从 z \,z\, z轴正向看逆时针.
解:(注明所选曲面的范围和侧) 令 Σ : x − y − z + 1 = 0 ( x 2 + 4 y 2 ⩽ 4 ) \,\Sigma:x-y-z+1=0(x^2+4y^2\leqslant 4)\, Σ:x−y−z+1=0(x2+4y2⩽4)取上侧,
(计算方向余弦,注意所选法向量的方向) n ⃗ = { 1 , − 1 , − 1 } \vec{n}=\{1,-1,-1\} n={1,−1,−1},法向量的方向余弦为
cos α = − 1 3 , cos β = 1 3 , cos γ = 1 3 \text{cos}\alpha=-\frac{1}{\sqrt{3}},\text{cos}\beta=\frac{1}{\sqrt{3}},\text{cos}\gamma=\frac{1}{\sqrt{3}} cosα=−31,cosβ=31,cosγ=31( Stokes \text{Stokes} Stokes、计算曲面积分)
∮ L y d x + 2 x d y + z d z = 1 3 ∬ Σ ∣ cos α cos β cos γ ∂ ∂ x ∂ ∂ y ∂ ∂ z y 2 x z ∣ d S = . . . \oint_Ly\text{d}x+2x\text{d}y+z\text{d}z=\frac{1}{\sqrt{3}}\iint\limits_\Sigma\begin{vmatrix} \text{cos}\alpha &\text{cos}\beta &\text{cos}\gamma \\ \frac{\partial }{\partial x} & \frac{\partial }{\partial y} & \frac{\partial }{\partial z}\\ y& 2x&z \end{vmatrix}\text{d}S=... ∮Lydx+2xdy+zdz=31Σ∬∣∣∣∣∣∣cosα∂x∂ycosβ∂y∂2xcosγ∂z∂z∣∣∣∣∣∣dS=...
(三) 曲线积分与路径无关的条件 (不重要)
Th . \text{Th}. Th. 设 Ω \,\Omega\, Ω为曲面单连通区域,函数 P ( x , y , z ) \,P(x,y,z) P(x,y,z), Q ( x , y , z ) Q(x,y,z) Q(x,y,z), R ( x , y , z ) R(x,y,z)\, R(x,y,z)在 Ω \,\Omega\, Ω内具有一阶连续偏导数,则以下四个命题等价:
1. 曲线积分
∫
Γ
P
d
x
+
Q
d
y
+
R
d
z
\,\int_\Gamma P\text{d}x+Q\text{d}y+R\text{d}z\,
∫ΓPdx+Qdy+Rdz与路径无关 (只与起点、终点有关);
2. 对区域
D
\,D\,
D内任意闭曲线
C
\,C\,
C,有
∮
C
P
d
x
+
Q
d
y
+
R
d
z
=
0
\oint_CP\text{d}x+Q\text{}dy+R\text{d}z=0
∮CPdx+Qdy+Rdz=0
3. 区域
D
\,D\,
D内恒有
∂
Q
∂
x
=
∂
P
∂
y
,
∂
P
∂
z
=
∂
R
∂
x
,
∂
R
∂
y
=
∂
Q
∂
z
\frac{\partial{Q}}{\partial{x}}=\frac{\partial{P}}{\partial{y}},\frac{\partial{P}}{\partial{z}}=\frac{\partial{R}}{\partial{x}},\frac{\partial{R}}{\partial{y}}=\frac{\partial{Q}}{\partial{z}}
∂x∂Q=∂y∂P,∂z∂P=∂x∂R,∂y∂R=∂z∂Q
4. 在区域 D \,D\, D内, ∃ u ( x , y , z ) \exist\,u(x,y,z) ∃u(x,y,z),使得 d u = P d x + Q d y + R d z \,\text{d}u=P\text{d}x+Q\text{d}y+R\text{d}z du=Pdx+Qdy+Rdz.