原创博文地址;opencv学习笔记02
OpenCV-Python教程:11.图片阈值
https://www.jianshu.com/p/267a32ad0a23
cv2阈值处理:https://blog.csdn.net/u011070767/article/details/80639556
一、全局阈值
为整个图片指定一个阈值,函数为cv2.threshold(src, thresh, maxval, type, dst=None)
OpenCV-Python教程:11.图片阈值https://www.jianshu.com/p/267a32ad0a23
二、自适应阈值
OpenCV-Python教程:12.图片的几何转换https://www.jianshu.com/p/1c6512d475cc
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
1.降噪
img = cv2.imread(‘messi5.jpg’)
为了更好地额准确率,使用二进制图像,所以在找轮廓前,使用阈值或者canny边缘检测。 im = cv2.imread(‘test.jpg’)
img=cv2.drawContours(img,contours,-1,(0,255,0),3)
img=cv2.drawContours(img,contours,3,(0,255,0),3)
cnt=contours[4]img=cv2.drawContours(img,[cnt],0,(0,255,0),3)
approx = cv2.approxPolyDP(cnt,epsilon,True)
hull = cv2.convexHull(points[, hull[, clockwise[, returnPoints]]
k=cv2.isContourConvex(cnt)
x,y,w,h = cv2.boundingRect(cnt)
rect = cv2.minAreaRect(cnt)
(x,y),radius = cv2.minEnclosingCircle(cnt)
ellipse=cv2.fitEllipse(cnt)
rows,cols = img.shape[:2]
x,y,w,h=cv2.boundingRect(cnt)
area=cv2.contourArea(cnt)
(x,y),(MA,ma),angle=cv2.fitEllipse(cnt)
mask = np.zeros(imgray.shape,np.uint8)
min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(imgray,mask=mask)
mean_val=cv2.mean(im,mask=mask)
leftmost = tuple(cnt[cnt[:,:,0].argmin()][0])
|
二、自适应阈值
前面介绍的是全局性的阈值,整个图像的像素都以此阈值为基准。而自适应阈值可以看成是一种局部性的阈值,指定一个区域大小,此区域内的阈值为区域里面像素的平均值(或加权和)减去第六个参数C
1 2 3 4 5 6 7 8 9 | adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C, dst=None): src:原图(灰图) maxValue:像素值上限 adaptiveMethod:自适应方法 cv2.ADAPTIVE_THRESH_MEAN_C :领域内均值 cv2.ADAPTIVE_THRESH_GAUSSIAN_C :领域内像素点加权和,权重为一个高斯窗口 thresholdType:只有两个cv2.THRESH_BINARY 和cv2.THRESH_BINARY_INV blockSize: 规定正方形领域的大小 C:常熟C,阈值等于指定正方形领域的均值或加权和减去这个常熟 |
OpenCV-Python教程:12.图片的几何转换
https://www.jianshu.com/p/1c6512d475cc
OpenCV提供了两个转换函数,cv2.warpAffine和cv2.warpPerspective,通过他们你可以进行各种转换,cv2.warpAffine接受2x3的转换矩阵二cv2.warpPerspective接受3x3的转换矩阵做为输入。
OpenCV有一个函数cv2.resize()来干这个,图片的大小可以人工指定,或者你可以指定缩放因子。有不同的差值方式可以使用,推荐的插值方法是缩小时用cv2.INTER_AREA,放大用cv2.INTER_CUBIC(慢)和cv2.INTER_LINEAR。默认情况下差值使用cv2.INTER_LINEAR
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | res = cv2.resize(img, None, fx=2, fy=2, interpolation=cv2.INTER_CUBIC) #OR height, width = img.shape[:2] res = cv2.resize(img, (2*width, 2*height), interpolation=cv2.INTER_CUBIC) ``` 平移是改变物体的位置。 你可以把它变成Numpy的数组,类型是np.float32的,然后把它传给cv2.warpAffine()函数 ``` M = np.float32([[1,0,100],[0,1,50]]) dst = cv2.warpAffine(img, M, (cols,rows)) ``` 旋转 ``` M = cv2.getRotationMatrix2D((cols/2,rows/2), 90, 1) dst = cv2.warpAffine(img, M, (cols, rows)) ``` 仿射变换 ``` M = cv2.getAffineTransform(pts1, pts2) dst = cv2.warpAffine(img,M,(cols, rows)) ``` 透视变换 对于透视变换,你需要一个3x3的转换矩阵。转换后直线仍然保持直线 cv2.getPerspectiveTransform函数就能得到转换矩阵了,再用cv2.warpPerspective来接收这个3x3的转换矩阵。 |
pts1 = np.float32([[56,65],[368,52],[28,387],[389,390]])
pts2 = np.float32([[0,0],[300,0],[0,300],[300,300]])
M = cv2.getPerspectiveTransform(pts1,pts2)
dst = cv2.warpPerspective(img, M,(300,300))
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 | ## OpenCV-Python教程:13.平滑图片 https://www.jianshu.com/p/451c52a74ddb ``` kernel = np.ones((5,5), np.float32)/25 dst = cv2.filter2D(img, -1, kernel) ``` 图片模糊(图片平滑) 1.平均 这个方法是用一个标准化的箱式过滤器来卷积。它简单的把核区域周围的像素的平均替换中心元素。 这个是用的cv2.blur()或者cv2.boxFilter()。 如果你不想用标准化箱式过滤器,使用cv2.boxFilter()然后传参数normalize=False给函数。 blur = cv2.blur(img,(5,5)) 2.高斯滤波 在这个方法里,使用一个高斯核。函数是cv2.GaussianBlur()。 blur = cv2.GaussianBlur(img,(5,5),0) 3.中值滤波 这里函数cv2.medianBlur()计算核窗口下的所有像素的中值来替换中心像素点。这个特别适合去除椒盐噪点 在高斯和箱式过滤中,给中心点用的过滤的值可以是在原图中没有的值,但是在中值滤波中不同,因为中心元素总是被图片里的某个像素值替代。这个方法在去除噪音上很高效。核的大小必须是正奇数。 median = cv2.medianBlur(img,5) 4.双边滤波 我们之前展示过的滤波器都是倾向于模糊边界的。但是双边滤波不是这样,cv2.bilateralFilter(),在保持边界的情况下去除噪点非常有效。但是这个操作比其他滤波器都慢一些。 blur = cv2.bilateralFilter(img,9,75,75) ## OpenCV-Python教程:14.形态变换 https://www.jianshu.com/p/dcecaf62da71 1.腐蚀 腐蚀的基本理念就和土壤腐蚀一样,它会腐蚀掉前景的边缘(所以前景应该用白色)。 erosion = cv2.erode(img,kernel,iterations=1) 2.膨胀 这个就是腐蚀的反义词,在核下只要有至少一个像素是1,像素的值就是1.所以它会增加图片上白色区域的范围或者前景物体的大小。 dilation = cv2.dilate(img,kernel,iterations=1) 3.开 开就是腐蚀之后再膨胀的另一个名字。我们使用函数cv2.morphologyEx() opening = cv2.morphologyEx(img,cv2.MORPH_OPEN,kernel) 4.闭 闭是开的反义词,膨胀之后再腐蚀,在用来关闭前景对象里的小洞或小黑点很有用。 closing = cv2.morphologyEx(img,cv2.MORPH_CLOSE,kernel) 5.形态梯度 这个和腐蚀以及膨胀不同,结果看上去像是物体的轮廓。 gradient = cv2.morphologyEx(img,cv2.MORPH_GRADIENT,kernel) 6.顶帽 这个是输入图片和图片的开运算结果的差别,下面是9x9的核的 tophat=cv2.morphologyEx(img,cv2.MORPH_TOPHAT,kernel) 7.黑帽 这是输入图片的闭的结果和输入图片的差别。 blackhat=cv2.morphologyEx(img,cv2.MORPH_BLACKHAT,kernel) ## OpenCV-Python教程:15.图片梯度 https://www.jianshu.com/p/e7d466446a06 图像梯度的基本原理:https://blog.csdn.net/saltriver/article/details/78987096, 当用均值滤波器降低图像噪声的时候,会带来图像模糊的副作用。我们当然希望看到的是清晰图像。那么,清晰图像和模糊图像之间的差别在哪里呢?从逻辑上考虑,图像模糊是因为图像中物体的轮廓不明显,轮廓边缘灰度变化不强烈,层次感不强造成的,那么反过来考虑,**轮廓边缘灰度变化明显些,层次感强些是不是图像就更清晰**些呢。 sobel算子,scharr算子,Laplacian算子:https://blog.csdn.net/naruhina/article/details/104710805 ![](/images/20200711150552737_1758338257.png) ![](/images/20200711150607913_337996939.png) ![](/images/20200711150643802_1766792577.png) ## OpenCV-Python教程:16.Canny边缘检测 https://www.jianshu.com/p/f91a7b8e5285 Canny 边缘检测是一个很流行的边缘检测算法。由John F.Canny在1986年开发。这是一个多步骤的算法。 |
1.降噪
2.找到图片中的亮度梯度
3.非最大值抑制
4.滞后阈值
1 2 3 4 5 6 7 8 9 10 | OpenCV把所有这些放在一个函数里,edges = cv2.Canny(img,100,200)。我们来看看怎么用它,第一个参数是输入图片,第二个和第三个参数是我们的minVal 和maxVal。aperture_size参数是索贝尔核的大小,用来找图片的梯度。默认是3,最后一个参数是L2gradient,用来指定寻找梯度幅值的公式。如果为True,会使用上面提到的更准确的公式,否则会用下面这个函数,默认情况下为False: ![](/images/20200711151024150_1861720474.png) ## OpenCV-Python教程:17.图像金字塔 https://www.jianshu.com/p/a06e38691dca 处理一个图像的不同分辨率的图片。比如在**搜索图像里的某些元素的时候**,比如脸,我们并不确认目标在图片里的大小。在这种情况下,我们可能需要创建一系列的不同分辨率的图片来在其中寻找目标。这些不同分辨率的图片叫做图片金字塔(因为他们从小到大堆在一起的时候像个金字塔) 有两种图像金字塔1)高斯金字塔 2)拉普拉斯金字塔 **高斯金字塔的高级(低分辨率)是从低级别(高分辨率)的图像里移除连续的行和列来形成的**。高级别理的每个像素是下级5个高斯权重的像素得到的。 **拉普拉斯金字塔式从高斯金字塔得到的**,没有单独的函数。 |
img = cv2.imread(‘messi5.jpg’)
lower_reso = cv2.pyrDown(higher_reso)
higher_reso2 = cv2.pyrUp(lower_reso)
1 2 3 | ## OpenCV-Python教程:18.图像轮廓 https://www.jianshu.com/p/4f790fb18691 轮廓可以被简单解释为一个**连接所有连续点的曲线(沿边界),有同样的颜色和亮度**。轮廓在做**形状分析和目标检测与识别**都很有用。 |
为了更好地额准确率,使用二进制图像,所以在找轮廓前,使用阈值或者canny边缘检测。
findContours函数修改原图。所以如果你想在找轮廓后还需要原图,把它存到别的变量里。
在OpenCV里,找轮廓和在黑色背景里找白色目标一样,所以记住,目标应该是白的而背景是黑色的。
im = cv2.imread(‘test.jpg’)
imgray = cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(imgray,127,255,0)
image, contours, hierarchy = cv2.findContours(thresh,cv2.RETR_TREE,cv2.CHAIN_APPROX_SIMPLE)
1 2 | 要绘制轮廓,可以用cv2.drawContours函数。如果你有图形的边界点,也可以用来绘制任何形状。 要画一个图像的所有轮廓: |
img=cv2.drawContours(img,contours,-1,(0,255,0),3)
1 | 要画第四级轮廓: |
img=cv2.drawContours(img,contours,3,(0,255,0),3)
1 | 但大多数时候,下面的更有用: |
cnt=contours[4]img=cv2.drawContours(img,[cnt],0,(0,255,0),3)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 | Contour 近似方法 这是cv2.findContours函数的参数,它实际是指什么呢? **轮廓是图形的边界。它存了边界坐标(x,y)**,但是它存了所有坐标么?这个就是轮廓近似方法指定的。 如果你传cv2.CHAIN_APPROX_NONE,所有的边界点都会存下来。但是实际上我们需要所有的点么?比如说,你发现一个直线的轮廓,你需要这线上的所有点来表示这个线么?不需要,我们只需要两个端点就够了。**这就是cv2.CHAIN_APPROX_SIMPLE要做的。它会去掉所有冗余点来压缩轮廓,节省内存。** ## OpenCV-Python教程:19.轮廓属性 https://www.jianshu.com/p/6bde79df3f9d 1图像矩 帮你计算一些属性,比如重心,面积等。 函数cv2.moments()会给你一个字典,包含所有矩值 2.轮廓面积 轮廓面积由函数cv2.contourArea()得到或者从矩里得到M['m00'] 3.轮廓周长 可以用cv2.arcLength()函数得到。第二个参数指定形状是否是闭合的轮廓(如果传True)。或者只是一个曲线。 4.轮廓近似 这会把轮廓形状近似成别的边数少的形状,边数由我们指定的精确度决定。这是Douglas-Peucker算法的实现。 |
approx = cv2.approxPolyDP(cnt,epsilon,True)
1 2 | 5.凸形外壳 凸形外壳和轮廓近似类似,但是还不一样(某些情况下两个甚至提供了同样的结果)。 |
hull = cv2.convexHull(points[, hull[, clockwise[, returnPoints]]
1 2 | 6.检查凸面 有一个函数用来检查是否曲线是凸面, cv2.isContourConvex().它返回True或False。 |
k=cv2.isContourConvex(cnt)
1 2 3 | 7.边界矩形 有两种边界矩形 7.a.正边界矩形 |
x,y,w,h = cv2.boundingRect(cnt)
img = cv2.rectangle(img,(x,y),(x+w,y+h),(0,255,0),2)
1 | 7.b.渲染矩形 |
rect = cv2.minAreaRect(cnt)
box = cv2.boxPoints(rect)
box = np.int0(box)
im = cv2.drawContours(im,[box],0,(0,0,255),2)
1 2 3 | 这个边界矩形是用最小面积画出来的,所以要考虑旋转。函数是cv2.minAreaRect()。它返回一个Box2D结构,包含了(左上角(x,y),(width, height),旋转角度)。但是要画这个矩形我们需要4个角。这四个角用函数cv2.boxPoints()得到 8.最小闭包圆 我们找一个目标的外接圆可以用函数cv2.minEnclosingCircle().这个圆用最小面积完全包围目标。 |
(x,y),radius = cv2.minEnclosingCircle(cnt)
center = (int(x),int(y))
radius = int(radius)
img = cv2.circle(img,center,radius,(0,255,0),2)
1 2 | 9.椭圆 用一个椭圆来匹配目标。它返回一个旋转了的矩形的内接椭圆 |
ellipse=cv2.fitEllipse(cnt)
im=cv2.ellipse(im,ellipse,(0,255,0),2)
1 2 | 10. 直线 类似的我们可以匹配一根直线,下面的图像包含一系列的白色点,我们可以给它一条近似的直线。 |
rows,cols = img.shape[:2]
[vx,vy,x,y] = cv2.fitLine(cnt, cv2.DIST_L2,0,0.01,0.01)
lefty = int((-xvy/vx) + y)
righty = int(((cols-x)vy/vx)+y)
img = cv2.line(img,(cols-1,righty),(0,lefty),(0,255,0),2)
1 2 3 4 5 | ## OpenCV-Python教程:20.轮廓属性 https://www.jianshu.com/p/0d5d357840e6 我们要得到一些目标有用的属性,比如当量直径 1.高宽比 这是目标的边界矩形的宽高比 |
x,y,w,h=cv2.boundingRect(cnt)
aspect_ratio=float(w)/h
1 2 3 4 5 6 | 2.Extent Extent是轮廓面积和边界矩形面积的比率 3.Solidity 是轮廓面积和凸形外壳面积的比率 4.等价半径 是面积和轮廓面积一样的圆的半径 |
area=cv2.contourArea(cnt)
equi_diameter=np.sqrt(4*area/np.pi)
1 2 | 5.方向 目标的方向角度。下面的方法可以得到长轴和短轴长度 |
(x,y),(MA,ma),angle=cv2.fitEllipse(cnt)
1 2 | 6. 在某些情况下,我们可能需要构成目标的所有点。 |
mask = np.zeros(imgray.shape,np.uint8)
cv2.drawContours(mask,[cnt],0,255,-1)
pixelpoints = np.transpose(np.nonzero(mask))
#pixelpoints = cv2.findNonZero(mask)
1 2 | 这里,两个方法,一个使用Numpy函数,另一个使用OpenCV函数(最后的注释行)达到同样目的。结果也是相同的。不同的一点是Numpy给的坐标是(row, column)格式,而OpenCV给的坐标是(x, y)格式,所以基本上结果可以互相转换。row = x , column = y 7.最大值,最小值以及他们的位置 |
min_val,max_val,min_loc,max_loc=cv2.minMaxLoc(imgray,mask=mask)
1 2 | 8.平均颜色和平均强度 我们可以得到目标的平均颜色。或者是灰度模式下的平均亮度。再次使用了mask image |
mean_val=cv2.mean(im,mask=mask)
1 2 | 9.端点 端点表示最高点,最低点,最左和最右点。 |
leftmost = tuple(cnt[cnt[:,:,0].argmin()][0])
rightmost=tuple(cnt[cnt[:,:,0].argmax()][0])
topmost=tuple(cnt[cnt[:,:,1].argmin()][0])
bottommost=tuple(cnt[cnt[:,:,1].argmax()][0])