算法|2025最强优化算法

  • 根据2025年的最新研究进展,以下是被广泛认可的几种“最强优化算法”,它们在理论创新、性能表现和应用范围上均有显著突破:

一、植物根茎生长优化算法(PRGO)

1 - 核心原理:灵感来源于植物根系结构(直根系与须根系),通过建模根系吸收养分的动态过程,结合马尔可夫理论证明其全局收敛性。算法分为纤维根、侧根和主根的生长模型,利用随机数控制探索与开发方向的平衡。
2. - 优势: - 在CEC2005、CEC2014等测试函数中表现远超麻雀优化算法(SSA)等传统算法。 - 独特的“直根系-须根系”混合策略,既能快速收敛,又避免陷入局部最优。
3. - 应用场景:复杂工程优化、预测模型参数调优等。—

二、 梦境优化算法(DOA)

  1. 核心原理:模拟人类梦境中的记忆与遗忘机制,通过分组策略(探索阶段分为5组,每组遗忘维度不同)和梦境共享策略,动态平衡全局搜索与局部开发。
  2. -优势
### 指数三角优化算法 (ETO) 的原理 指数三角优化算法(Exponential-Trigonometric Optimization, ETO)是一种新型的元启发式优化算法,旨在解决复杂的工程和技术问题。该算法的核心在于利用指数函数和三角函数的独特性质,在探索与开发之间找到最佳平衡点。 #### 探索与开发的平衡机制 ETO 算法通过引入多个随机和自适应变量来动态调整搜索过程中的探索和开发行为。具体来说,指数函数负责引导全局搜索,帮助算法更广泛地覆盖解空间;而三角函数则主要用于局部细化,提高收敛速度并增强局部最优解的质量[^1]。 ```python import numpy as np def eto_search(space_bounds, num_agents=30, max_iter=100): agents = initialize_agents(num_agents, space_bounds) best_solution = None for iteration in range(max_iter): # 更新位置使用指数和三角函数 new_positions = update_positions(agents, iteration, max_iter) # 计算适应度值 fitness_values = evaluate_fitness(new_positions) # 找到当前迭代的最佳个体 current_best = find_best(fitness_values, new_positions) if not best_solution or is_better(current_best, best_solution): best_solution = current_best # 自适应参数更新 adapt_parameters(iteration, max_iter) return best_solution ``` ### 应用领域 ETO 已经成功应用于多种复杂工程问题中,特别是在机械结构设计、材料科学以及流体力学等领域表现出色。由于其强大的寻优能力和鲁棒性,ETO 能够有效处理高维非线性和多模态优化问题[^2]。 ### 实现方法 为了便于研究人员测试和验证 ETO 的性能,《Computer Methods in Applied Mechanics and Engineering》期刊提供了完整的 MATLAB 代码实现。这些代码不仅包含了基本框架,还包括详细的注释说明每一步骤的功能及其背后的数学逻辑[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值