2025最新智能优化算法:鹰鱼优化算法(HawkFish Optimization Algorithm,HFOA)求解23个经典函数测试集,MATLAB

一、 鹰鱼优化算法

鹰鱼优化算法(HawkFish Optimization Algorithm,HFOA)是2025年提出的一种新颖的元启发式优化算法,灵感来源于鹰鱼的性别转换行为。该算法通过引入双适应度函数、动态聚类和视觉范围调整等机制,有效平衡了搜索空间的探索和开发,避免了局部最优解的陷入,提高了优化效率和解的质量。算法在解决复杂优化问题时表现出色,优于其他传统优化算法。
在这里插入图片描述

数学模型

鹰鱼优化算法的数学模型主要基于鹰鱼的性别转换行为和觅食行为。算法中,每个个体(人工鱼)的位置、适应度值、移动方式等都通过数学公式进行描述。

性别转换模型

p ( t ) p(t) p(t)表示在时间 t t t时种群中雌性的比例, q ( t ) q(t) q(t)表示雄性的比例:

p ( t ) + q ( t ) = 1 p(t) + q(t) = 1 p(t)+q(t)=1

初始时,假设所有鹰鱼都是雌性,因此 p ( 0 ) = 1 p(0) = 1 p(0)=1 q ( 0 ) = 0 q(0) = 0 q(0)=0

d ( t ) d(t) d(t)表示在时间 t t t时的食物可用性,其中 d ( t ) > 0 d(t) > 0 d(t)>0表示食物充足, d ( t ) = 0 d(t) = 0 d(t)=0表示没有食物。

雌性比例的变化率可以表示为:

d p d t = − a × p × ( 1 − d ( t ) ) \frac{dp}{dt} = -a \times p \times (1 - d(t)) dtdp=a×p×(1d(t))

其中, a a a是一个表示性别变化率的常数。

雄性比例的变化率可以表示为:

d q d t = a × p × ( 1 − d ( t ) ) \frac{dq}{dt} = a \times p \times (1 - d(t)) dtdq=a×p×(1d(t))

适应度函数

在优化问题中,适应度函数用于评估个体的优劣。对于最小化问题,适应度函数可以定义为:

f i t n e s s ( x ) = f ( x ) fitness(x) = f(x) fitness(x)=f(x)

个体移动模型

每个个体的移动由以下公式决定:

x ( i , j ) = x ( i , j ) + s ( i , j ) × d ( i , j ) x(i,j) = x(i,j) + s(i,j) \times d(i,j) x(i,j)=x(i,j)+s(i,j)×d(i,j)

其中, x ( i , j ) x(i,j) x(i,j)是第 i i i条鱼的第 j j j个位置元素, s ( i , j ) s(i,j) s(i,j)是第 i i i条鱼的步长, d ( i , j ) d(i,j) d(i,j)是第 i i i条鱼的方向向量元素。

动态聚类

计算种群中个体之间的距离矩阵 D D D,其中 D ( i , j ) D(i,j) D(i,j)表示第 i i i条鱼和第 j j j条鱼之间的距离。然后使用基于欧几里得距离的聚类算法将种群划分为 k k k个聚类 C 1 , C 2 , … , C k C_1, C_2, \ldots, C_k C1,C2,,Ck

学习机制

每个个体在子种群内向邻居学习,更新位置的公式为:

x ( i , j ) = x ( i , j ) + w × ( x ( j b e s t , j ) − x ( i , j ) ) x(i,j) = x(i,j) + w \times (x(j_{best},j) - x(i,j)) x(i,j)=x(i,j)+w×(x(jbest,j)x(i,j))

其中, x ( j b e s t , j ) x(j_{best},j) x(jbest,j)是子种群中最佳个体的第 j j j个位置元素, w w w是学习系数。

步长和方向向量更新

步长和方向向量的更新公式为:

s ( i , j ) = s ( i , j ) + α × r × ( x g l o b a l ( j ) − x ( i , j ) ) s(i,j) = s(i,j) + \alpha \times r \times (x_{global}(j) - x(i,j)) s(i,j)=s(i,j)+α×r×(xglobal(j)x(i,j))

d ( i , j ) = d ( i , j ) + β × r × ( x ( i , j ) − x l o c a l ( j ) ) d(i,j) = d(i,j) + \beta \times r \times (x(i,j) - x_{local}(j)) d(i,j)=d(i,j)+β×r×(x(i,j)xlocal(j))

其中, α \alpha α β \beta β是学习系数, r r r是0到1之间的随机数, x g l o b a l ( j ) x_{global}(j) xglobal(j)是全局最佳个体的第 j j j个位置元素, x l o c a l ( j ) x_{local}(j) xlocal(j)是局部最佳个体的第 j j j个位置元素。

算法流程

  1. 初始化参数:种群大小 N N N、维度 n n n、子种群数 k k k、全局学习系数 α \alpha α、局部学习系数 β \beta β、子种群学习系数 w w w、最大迭代次数 m a x _ i t e r a t i o n s max\_iterations max_iterations
  2. 在搜索空间中随机初始化人工鱼种群。
  3. 对于每次迭代:
    • 使用两个适应度函数 f 1 ( x ) f_1(x) f1(x) f 2 ( x ) f_2(x) f2(x)评估每条鱼的适应度。
    • 根据适应度更新每条鱼的位置。
    • 移动后重新评估每条鱼的适应度。
    • 将种群聚类成 k k k个子种群以增加多样性。
    • 在每个子种群内执行鱼学习。
    • 更新每条鱼的步长和方向向量。
  4. 返回找到的全局最佳解。

算法描述

鹰鱼优化算法是一种受鹰鱼性别转换行为启发的元启发式优化算法。算法通过模拟鹰鱼的觅食行为和性别转换,动态调整种群中的个体角色和搜索策略,以平衡探索和开发,避免局部最优,提高优化效率。

动态性别转换策略

根据食物可用性 F F F与预定义阈值 F t h r e s h o l d F_{threshold} Fthreshold的比较,动态改变每条鱼的性别。如果 F > F t h r e s h o l d F > F_{threshold} F>Fthreshold,则改变鱼的性别(例如,雄性变为雌性,反之亦然)。

视觉范围调整

为雄性和雌性子种群分配独特的视觉范围 V m a l e V_{male} Vmale V f e m a l e V_{female} Vfemale。在评估适应度和更新位置时,每条鱼仅考虑其对应视觉范围内的其他鱼。

位置更新

使用以下公式更新每条鱼的位置:

x f ( t + 1 ) = x f ( t ) + s t e p _ s i z e × ( x c e n t e r − x f ( t ) ) x_f(t+1) = x_f(t) + step\_size \times (x_{center} - x_f(t)) xf(t+1)=xf(t)+step_size×(xcenterxf(t))

其中, x f ( t ) x_f(t) xf(t)是鱼 f f f在迭代 t t t时的位置, s t e p _ s i z e step\_size step_size是预定义参数, x c e n t e r x_{center} xcenter是对应子种群的中心位置。

中心位置计算

子种群 P m a l e P_{male} Pmale P f e m a l e P_{female} Pfemale的中心位置计算公式为:

x c e n t e r = 1 ∥ P m a l e ∥ 或 ∥ P f e m a l e ∥ × ∑ x j x_{center} = \frac{1}{\|P_{male}\| \text{或} \|P_{female}\|} \times \sum x_j xcenter=PmalePfemale1×xj

其中, x j x_j xj是相应子种群中第 j j j条鱼的位置。

邻居搜索

在视觉范围内寻找邻居鱼 N f N_f Nf,并根据最佳邻居鱼 x n b e s t x_{nbest} xnbest更新鱼 f f f的位置:

x f ( t + 1 ) = x f ( t ) + s t e p _ s i z e × ( x n b e s t − x f ( t ) ) x_f(t+1) = x_f(t) + step\_size \times (x_{nbest} - x_f(t)) xf(t+1)=xf(t)+step_size×(xnbestxf(t))

在这里插入图片描述
在这里插入图片描述

二、23个函数介绍

在这里插入图片描述
参考文献:

[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、部分代码及结果



clear;
clc;
close all;
warning off all;

SearchAgents_no=50;    %Number of search solutions
Max_iteration=500;    %Maximum number of iterations

Func_name='F1'; % Name of the test function

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_F(Func_name); 

tic;
[Best_score,Best_pos,cg_curve]=(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); 
tend=toc;

% figure('Position',[500 500 901 345])
%Draw search space
subplot(1,2,1);
func_plot(Func_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Func_name,'( x_1 , x_2 )'])

%Draw objective space
subplot(1,2,2);
semilogy(cg_curve,'Color','m',LineWidth=2.5)
title(Func_name)

% title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid on
box on
legend('')

display(['The running time is:', num2str(tend)]);
display(['The best fitness is:', num2str(Best_score)]);
display(['The best position is: ', num2str(Best_pos)]);

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码见下方名片

### 2025最新优化算法在区块链技术中的应用 随着区块链技术的发展,优化算法的应用变得越来越重要。为了保持接收最新的区块链论文和技术进展,建议关注相关研究机构和学术平台发布的资料[^1]。 #### 深度学习模型的预训练及其对区块链的影响 DeepSeek-V3展示了通过大规模数据预训练提升性能的可能性,在14.8万亿高质量和多样化的token上进行预训练的数据构建方面进行了多项改进。这些进步可以应用于提高区块链系统的效率和安全性,特别是在智能合约验证、交易处理速度等方面[^2]。 #### 新型无冗余依赖图结构 对于区块链而言,新型无冗余依赖图(IT(k) 图)提供了一种有效的方法来减少区块间的重复计算并加速共识过程。该方法通过对依赖关系进行精炼,确保了每条边都不再存在长度为k或更短的任何前向路径,从而提高了整个网络的操作效率[^3]。 #### 提示词编程与自动化工具链 提示词编程的持续集成管道优化能够帮助开发者更快更好地实现功能迭代和服务部署。这不仅限于传统软件开发领域;同样适用于基于区块链的应用程序开发环境。例如,在Hyperledger Fabric或其他联盟链平台上实施CI/CD流程时,可以通过这种方式显著缩短从代码提交到生产上线的时间周期[^4]。 ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestClassifier # 加载Iris数据集作为示范案例 data = load_iris() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target) model = RandomForestClassifier() param_grid = { 'n_estimators': [100, 200], 'max_depth': [None, 10, 20] } grid_search = GridSearchCV(model, param_grid=param_grid, cv=5) grid_search.fit(X_train, y_train) best_model = grid_search.best_estimator_ print(f'Best parameters found: {grid_search.best_params_}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值