2025最新智能优化算法:龙卷风优化算法( Tornado Optimizer with Coriolis force ,TOC) 求解23个经典函数测试集,MATLAB

一、龙卷风优化算法

龙卷风优化算法( Tornado Optimizer with Coriolis force ,TOC) 是2025年提出的一种新型的基于自然启发的元启发式算法,其灵感来源于自然界中龙卷风的形成和演化过程。龙卷风的形成是一个复杂的自然现象,通常从雷暴或风暴中发展而来,并在地面上形成强烈的旋转气流。TOC 算法通过模拟龙卷风的形成、发展和消散过程,将其转化为优化问题中的搜索过程。
在这里插入图片描述

龙卷风的形成和科里奥利力

龙卷风的形成过程可以分为以下几个阶段:

  1. 初始阶段:在风暴系统中,风速和风向的变化会形成旋转效应,这种旋转效应在上升气流的作用下被拉直,形成旋转的气柱。
  2. 发展阶段:当风暴增强时,会形成超级单体雷暴(supercell thunderstorm),这种雷暴具有旋转的上升气流,是龙卷风形成的关键条件。
  3. 成熟阶段:当旋转的气柱与超级单体雷暴结合时,龙卷风开始形成并逐渐延伸至地面。
  4. 消散阶段:随着条件的变化,龙卷风逐渐变窄并逐渐升回云层,最终消散。

科里奥利力是地球自转引起的惯性力,它对大气和海洋中的大规模环流系统有重要影响。在北半球,Coriolis 力会使气流向右偏转,而在南半球则向左偏转。科里奥利力的大小与纬度和风速有关,其公式为:
∣ ⃗ a C O R ∣ = f V |⃗a_{COR}| = fV ∣⃗aCOR=fV
其中, f f f 是 Coriolis 参数,定义为:
f = 2 ⋅ Ω ⋅ sin ⁡ ( ϕ ) f = 2 \cdot \Omega \cdot \sin(\phi) f=2Ωsin(ϕ)
其中, Ω \Omega Ω 是地球的角速度, ϕ \phi ϕ 是纬度。

气旋流和梯度风

气旋流(Cyclonic flow)是指气流呈逆时针方向旋转(北半球)或顺时针方向旋转(南半球),通常与低气压系统相关。反气旋流(Anticyclonic flow)则相反,与高气压系统相关。在气旋流中,Coriolis 力和离心力(Centrifugal force, CeF)的方向相同,而压力梯度力(Pressure Gradient Force, PGF)则方向相反。其平衡关系可以表示为:
P G F = C F + C e F PGF = CF + CeF PGF=CF+CeF
在反气旋流中,PGF 和 CeF 方向相同,CF 方向相反,平衡关系为:
P G F + C e F − C F = 0 PGF + CeF - CF = 0 PGF+CeFCF=0

当气流的曲率半径 R R R 很小时,Coriolis 力可以忽略不计,此时的风速称为气旋风速(Cyclostrophic wind speed),其公式为:
V = − R ∂ ϕ ∂ n V = \sqrt{\frac{-R \partial \phi}{\partial n}} V=nRϕ
其中, ∂ ϕ / ∂ n \partial \phi / \partial n ϕ/n 是压力梯度力的法向分量。

梯度风近似

在实际应用中,梯度风近似(Gradient wind approximation)用于描述气流在气旋和反气旋中的运动。其公式为:
V 2 / R + f V = − ∂ ϕ ∂ n V^2 / R + fV = -\frac{\partial \phi}{\partial n} V2/R+fV=nϕ
解此方程可得梯度风速 V V V
V = − f R ± f 2 R 2 + 4 f R ∂ ϕ / ∂ n 2 V = \frac{-fR \pm \sqrt{f^2 R^2 + 4f R \partial \phi / \partial n}}{2} V=2fR±f2R2+4fRϕ/n

基于科里奥利力的龙卷风优化器 (TOC)

TOC 算法是一种基于群体的优化算法,其核心思想是模拟龙卷风的形成和演化过程。算法中包含风暴(Windstorms)、雷暴(Thunderstorms)和龙卷风(Tornadoes)三种角色,它们在搜索空间中移动并相互作用,最终找到全局最优解。
TOC算法的实现步骤如下:
初始化种群:随机生成风暴、雷暴和龙卷风的位置。
适应度评估:计算每个个体的适应度值。
风速更新:根据科里奥利力和气流速度公式更新风速。
位置更新:根据风速更新个体的位置。
随机形成风暴:在搜索空间中随机生成新的风暴。
迭代终止:重复上述步骤,直到达到最大迭代次数或满足终止条件

初始化种群

TOC 算法的初始化过程是随机生成一组设计变量(风暴、雷暴和龙卷风)的位置。这些位置在搜索空间的上下界之间均匀分布。初始化公式为:
y i , j = l j + rand × ( u j − l j ) y_{i,j} = l_j + \text{rand} \times (u_j - l_j) yi,j=lj+rand×(ujlj)
其中, y i , j y_{i,j} yi,j 是第 i i i 个个体在第 j j j 维的初始位置, l j l_j lj u j u_j uj 分别是第 j j j 维的下界和上界, rand \text{rand} rand [ 0 , 1 ] [0, 1] [0,1] 之间的随机数。

适应度评估

每个风暴、雷暴和龙卷风的适应度值通过目标函数计算得出。适应度值越小,表示该个体越接近全局最优解。适应度计算公式为:
fit i = fit ( y i , 1 , y i , 2 , … , y i , d ) \text{fit}_i = \text{fit}(y_{i,1}, y_{i,2}, \dots, y_{i,d}) fiti=fit(yi,1,yi,2,,yi,d)
其中, fit i \text{fit}_i fiti 是第 i i i 个个体的适应度值, d d d 是问题的维度。

风暴的演化

风暴会根据其强度和演化速度向雷暴和龙卷风移动。风暴的演化过程通过适应度值来衡量,适应度值越低的风暴越有可能演化为雷暴或龙卷风。演化过程的数学模型如下:

风暴分配到雷暴和龙卷风

根据雷暴和龙卷风的适应度值,计算每个雷暴或龙卷风分配到的风暴数量。假设 n t nt nt 为雷暴数量, n o no no 为龙卷风数量, n w nw nw 为风暴数量,则有:
n t o = n t + n o nto = nt + no nto=nt+no
每个雷暴或龙卷风分配到的风暴数量为:
n w ˙ k = ⌊ f k ∑ k = 1 n t o f k × n w ⌋ n_{\dot{w}k} = \left\lfloor \frac{f_k}{\sum_{k=1}^{nto} f_k} \times nw \right\rfloor nw˙k=k=1ntofkfk×nw
其中, f k f_k fk 是第 k k k 个雷暴或龙卷风的适应度值, ⌊ ⋅ ⌋ \lfloor \cdot \rfloor 表示向下取整。

风暴的速度更新

风暴的速度更新考虑了 Coriolis 力的影响。更新公式为:
v ⃗ t + 1 i = { η ( μ v ⃗ t i − c f × R l 2 + C F l ) if rand ≥ 0.5 η ( μ v ⃗ t i − c f × R r 2 + C F r ) if rand < 0.5 \vec{v}_{t+1}^{i} = \begin{cases} \eta (\mu \vec{v}_{t}^{i} - c \frac{f \times R_l}{2} + \sqrt{CF_l}) & \text{if } \text{rand} \geq 0.5 \\ \eta (\mu \vec{v}_{t}^{i} - c \frac{f \times R_r}{2} + \sqrt{CF_r}) & \text{if } \text{rand} < 0.5 \end{cases} v t+1i={η(μv tic2f×Rl+CFl )η(μv tic2f×Rr+CFr )if rand0.5if rand<0.5
其中:

  • v ⃗ t + 1 i \vec{v}_{t+1}^{i} v t+1i 是第 i i i 个风暴在第 t + 1 t+1 t+1 次迭代的速度;
  • v ⃗ t i \vec{v}_{t}^{i} v ti 是第 i i i 个风暴在第 t t t 次迭代的速度;
  • η \eta η 是收缩因子,用于控制风暴的收敛速度,其值为:
    η = 2 2 − χ − χ 2 4 \eta = \frac{2}{\sqrt{2 - \chi - \frac{\chi^2}{4}}} η=2χ4χ2 2
    其中, χ \chi χ 是加速因子,取值为 4.10;
  • μ \mu μ 是模糊自适应动能因子,取值为:
    μ = 0.5 + rand 2 \mu = 0.5 + \frac{\text{rand}}{2} μ=0.5+2rand
  • R l R_l Rl R r R_r Rr 分别是北半球和南半球的曲率半径,其值为:
    R l = 2 1 + e − ( t − T ) / 2 , R r = − 2 1 + e − ( t − T ) / 2 R_l = \frac{2}{1 + e^{-(t-T)/2}}, \quad R_r = -\frac{2}{1 + e^{-(t-T)/2}} Rl=1+e(tT)/22,Rr=1+e(tT)/22
    其中, t t t 是当前迭代次数, T T T 是最大迭代次数;
  • c c c 是随机因子,取值范围为:
    c = b r × δ 1 × w r c = br \times \delta_1 \times wr c=br×δ1×wr
    其中, b r br br 是常数,取值为 100000; δ 1 \delta_1 δ1 是符号变化因子,
    参考文献
    [1]Braik, M., Al-Hiary, H., Alzoubi, H. et al. Tornado optimizer with Coriolis force: a novel bio-inspired meta-heuristic algorithm for solving engineering problems. Artif Intell Rev 58, 123 (2025). https://doi.org/10.1007/s10462-025-11118-9

二、23个函数介绍

在这里插入图片描述
参考文献:

[1] Yao X, Liu Y, Lin G M. Evolutionary programming made faster[J]. IEEE transactions on evolutionary computation, 1999, 3(2):82-102.

三、部分代码及结果



clear;
clc;
close all;
warning off all;

SearchAgents_no=50;    %Number of search solutions
Max_iteration=500;    %Maximum number of iterations

Func_name='F1'; % Name of the test function

% Load details of the selected benchmark function
[lb,ub,dim,fobj]=Get_F(Func_name); 

tic;
[Best_score,Best_pos,cg_curve]=SGA(SearchAgents_no,Max_iteration,lb,ub,dim,fobj); 
tend=toc;

% figure('Position',[500 500 901 345])
%Draw search space
subplot(1,2,1);
func_plot(Func_name);
title('Parameter space')
xlabel('x_1');
ylabel('x_2');
zlabel([Func_name,'( x_1 , x_2 )'])

%Draw objective space
subplot(1,2,2);
semilogy(cg_curve,'Color','m',LineWidth=2.5)
title(Func_name)

% title('Objective space')
xlabel('Iteration');
ylabel('Best score obtained so far');

axis tight
grid on
box on
legend('SGA')

display(['The running time is:', num2str(tend)]);
display(['The best fitness is:', num2str(Best_score)]);
display(['The best position is: ', num2str(Best_pos)]);

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

四、完整MATLAB代码见下方名片

### 2025最新优化算法在区块链技术中的应用 随着区块链技术的发展,优化算法的应用变得越来越重要。为了保持接收最新的区块链论文和技术进展,建议关注相关研究机构和学术平台发布的资料[^1]。 #### 深度学习模型的预训练及其对区块链的影响 DeepSeek-V3展示了通过大规模数据预训练提升性能的可能性,在14.8万亿高质量和多样化的token上进行预训练的数据构建方面进行了多项改进。这些进步可以应用于提高区块链系统的效率和安全性,特别是在智能合约验证、交易处理速度等方面[^2]。 #### 新型无冗余依赖图结构 对于区块链而言,新型无冗余依赖图(IT(k) 图)提供了一种有效的方法来减少区块间的重复计算并加速共识过程。该方法通过对依赖关系进行精炼,确保了每条边都不再存在长度为k或更短的任何前向路径,从而提高了整个网络的操作效率[^3]。 #### 提示词编程与自动化工具链 提示词编程的持续集成管道优化能够帮助开发者更快更好地实现功能迭代和服务部署。这不仅限于传统软件开发领域;同样适用于基于区块链的应用程序开发环境。例如,在Hyperledger Fabric或其他联盟链平台上实施CI/CD流程时,可以通过这种方式显著缩短从代码提交到生产上线的时间周期[^4]。 ```python from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.ensemble import RandomForestClassifier # 加载Iris数据集作为示范案例 data = load_iris() X_train, X_test, y_train, y_test = train_test_split(data.data, data.target) model = RandomForestClassifier() param_grid = { 'n_estimators': [100, 200], 'max_depth': [None, 10, 20] } grid_search = GridSearchCV(model, param_grid=param_grid, cv=5) grid_search.fit(X_train, y_train) best_model = grid_search.best_estimator_ print(f'Best parameters found: {grid_search.best_params_}') ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值