计算机视觉与深度学习 | Python实现EMD-CNN-LSTM时间序列预测(完整源码、数据、公式)

EMD-CNN-LSTM

  • 1. 环境准备
  • 2. 数据生成(示例数据)
  • 3. EMD分解
  • 4. 数据预处理
  • 5. CNN-LSTM模型定义
  • 6. 模型训练
  • 7. 预测与重构
  • 8. 性能评估
  • 核心公式说明
    • 1. 经验模态分解(EMD)
    • 2. CNN-LSTM混合模型
  • 参数调优建议
  • 扩展方向
  • 典型输出示例

以下是使用Python实现EMD-CNN-LSTM时间序列预测的完整代码,包含数据生成、经验模态分解(EMD)、CNN-LSTM混合模型构建、训练与预测。代码基于PyEMDPyTorch框架,适用于非平稳时间序列预测任务。


1. 环境准备

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from PyEMD import EMD
import torch
import to
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

单北斗SLAMer

代码有情,打赏有爱!谢谢!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值