TensorFlow搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)

I. 前言

前面已经写了很多关于时间序列预测的文章:

  1. 深入理解PyTorch中LSTM的输入和输出(从input输入到Linear输出)
  2. PyTorch搭建LSTM实现时间序列预测(负荷预测)
  3. PyTorch中利用LSTMCell搭建多层LSTM实现时间序列预测
  4. PyTorch搭建LSTM实现多变量时间序列预测(负荷预测)
  5. PyTorch搭建双向LSTM实现时间序列预测(负荷预测)
  6. PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  7. PyTorch搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  8. PyTorch搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  9. PyTorch搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  10. PyTorch搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  11. PyTorch中实现LSTM多步长时间序列预测的几种方法总结(负荷预测)
  12. PyTorch-LSTM时间序列预测中如何预测真正的未来值
  13. PyTorch搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  14. PyTorch搭建ANN实现时间序列预测(风速预测)
  15. PyTorch搭建CNN实现时间序列预测(风速预测)
  16. PyTorch搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  17. PyTorch搭建Transformer实现多变量多步长时间序列预测(负荷预测)
  18. PyTorch时间序列预测系列文章总结(代码使用方法)
  19. TensorFlow搭建LSTM实现时间序列预测(负荷预测)
  20. TensorFlow搭建LSTM实现多变量时间序列预测(负荷预测)
  21. TensorFlow搭建双向LSTM实现时间序列预测(负荷预测)
  22. TensorFlow搭建LSTM实现多变量多步长时间序列预测(一):直接多输出
  23. TensorFlow搭建LSTM实现多变量多步长时间序列预测(二):单步滚动预测
  24. TensorFlow搭建LSTM实现多变量多步长时间序列预测(三):多模型单步预测
  25. TensorFlow搭建LSTM实现多变量多步长时间序列预测(四):多模型滚动预测
  26. TensorFlow搭建LSTM实现多变量多步长时间序列预测(五):seq2seq
  27. TensorFlow搭建LSTM实现多变量输入多变量输出时间序列预测(多任务学习)
  28. TensorFlow搭建ANN实现时间序列预测(风速预测)
  29. TensorFlow搭建CNN实现时间序列预测(风速预测)
  30. TensorFlow搭建CNN-LSTM混合模型实现多变量多步长时间序列预测(负荷预测)
  31. PyG搭建图神经网络实现多变量输入多变量输出时间序列预测
  32. PyTorch搭建GNN-LSTM和LSTM-GNN模型实现多变量输入多变量输出时间序列预测
  33. PyG Temporal搭建STGCN实现多变量输入多变量输出时间序列预测
  34. 时序预测中Attention机制是否真的有效?盘点LSTM/RNN中24种Attention机制+效果对比
  35. 详解Transformer在时序预测中的Encoder和Decoder过程:以负荷预测为例
  36. (PyTorch)TCN和RNN/LSTM/GRU结合实现时间序列预测
  37. PyTorch搭建Informer实现长序列时间序列预测
  38. PyTorch搭建Autoformer实现长序列时间序列预测

上面所有文章都是“单变量输出”,虽然某些文章中提到了“多变量”,但这个多变量只是输入多变量,而不是输出多变量。比如我们利用前24个时刻的[负荷、温度、湿度、压强]预测接下来12个时刻的负荷,此时输入为多变量,虽然有多个输出(多步长),但输出的都是同一变量。

那么有没有办法一次性输出多个变量呢?当然是可以的,在前几篇文章的评论中也有人提到了这个问题,当时我给出的回答是:“这样做效果很不好,不建议这么做”。

II. 多变量输入多变量输出

多变量输入自不必说,不了解的可以去看一下前面几篇文章。

多变量输出是指:我们一次性输出多个变量的预测值。比如我们利用前24小时的[负荷、温度、湿度、压强]预测接下来12个时刻的[负荷、温度、湿度、压强]。实际上,我们可以将多个变量的输出分解开来,看成多个任务,也就是多任务学习,其中每一个任务都是前面提到的多变量输入单变量输出

具体来讲,假设需要预测四个变量,输出在经过LSTM后得到output,我们将output分别通过四个全连接层,就能得到四个输出。得到四个输出后,我们就可以计算出四个损失函数,对这四个损失函数,本文将其简单求平均以得到最终的损失函数。关于如何组合多任务学习中的损失,已经有很多文献探讨过,感兴趣的可以自行了解。

III. 代码实现

3.1 数据处理

本次实验的数据集中包含三个地区的负荷值。

数据集:
在这里插入图片描述

依旧使用前24个时刻的三个变量预测后12个时刻的三个变量,数据处理同前面文章一致。

3.2 模型搭建

多输入多输出LSTM模型搭建如下:

class MTL_LSTM(keras.Model):
    def __init__(self, args):
        super().__init__()
        self.args = args
        self.lstm = layers.LSTM(units=args.hidden_size, input_shape=(args.seq_len, args.input_size),
                                activation='tanh', return_sequences=True)
        self.fc = layers.Dense(64, activation='relu')
        self.fc1 = layers.Dense(args.output_size)
        self.fc2 = layers.Dense(args.output_size)
        self.fc3 = layers.Dense(args.output_size)

    def call(self, input_seq):
        output = self.lstm(input_seq)
        output = self.fc(output)
        pred1, pred2, pred3 = self.fc1(output), self.fc2(output), self.fc3(output)
        pred1, pred2, pred3 = pred1[:, -1, :], pred2[:, -1, :], pred3[:, -1, :]
        
        return [pred1, pred2, pred3]

可以看到,由于需要预测三个变量,所以我们在模型中定义了三个全连接层。在得到LSTM的输出后,分别利用三个全连接层得到三个变量的输出,再将三个输出进行拼接,得到最后的pred,pred的shape为:

predict(n_outputs, batch_size, output_size)

其中n_outputs=3,表示一次性预测三个变量,output_size=12表示这里采用了PyTorch搭建LSTM实现多变量多步长时间序列预测(一):直接多输出中的策略,一次性输出接下来12个时刻的预测值,因为是直接多输出,所以这里pred_step_size=output_size。

3.3 模型训练/测试

模型训练中,经过预测后,我们得到的label和pred的shape分别为:

label(batch_size, n_outputs, pred_step_size)
pred((n_outputs, batch_size, pred_step_size))

由于需要对每一个output计算损失然后相加求平均,所以我们的损失函数求解如下:

total_loss = 0
for k in range(args.n_outputs):
    total_loss = total_loss + loss_function(labels[:, k, :], preds[k])
total_loss /= 3

即每次都取出一个output进行计算求和再平均。

3.4 实验结果

简单训练100轮,三个地区的负荷值预测结果如下所示:

变量负荷1负荷2负荷3
MAPE4.44%7.61%6.60%

在这里插入图片描述
效果一般。

IV. 源码及数据

后面将陆续公开~

1. 导入Tensorflow库和其他必要的库 ```python import tensorflow as tf import numpy as np ``` 2. 定义超参数 ```python num_epochs = 50 batch_size = 32 learning_rate = 0.001 num_classes = 2 hidden_size = 128 timesteps = 28 num_layers = 2 ``` 3. 加载数据集 ```python from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("/tmp/data/", one_hot=True) ``` 4. 定义输入输出 ```python X = tf.placeholder("float", [None, timesteps, 28]) Y = tf.placeholder("float", [None, num_classes]) ``` 5. 定义LSTM模型 ```python def LSTM(x, weights, biases): x = tf.transpose(x, [1, 0, 2]) x = tf.reshape(x, [-1, 28]) x = tf.split(x, timesteps, 0) lstm_cell = tf.contrib.rnn.BasicLSTMCell(hidden_size, forget_bias=1.0, state_is_tuple=True) stacked_lstm = tf.contrib.rnn.MultiRNNCell([lstm_cell] * num_layers, state_is_tuple=True) outputs, states = tf.contrib.rnn.static_rnn(stacked_lstm, x, dtype=tf.float32) return tf.matmul(outputs[-1], weights['out']) + biases['out'] ``` 6. 初始化权重和偏置 ```python weights = { 'out': tf.Variable(tf.random_normal([hidden_size, num_classes])) } biases = { 'out': tf.Variable(tf.random_normal([num_classes])) } ``` 7. 构建模型 ```python logits = LSTM(X, weights, biases) prediction = tf.nn.softmax(logits) ``` 8. 定义损失函数和优化器 ```python loss = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=logits, labels=Y)) optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate).minimize(loss) ``` 9. 定义准确率 ```python correct_pred = tf.equal(tf.argmax(prediction, 1), tf.argmax(Y, 1)) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) ``` 10. 训练模型 ```python init = tf.global_variables_initializer() with tf.Session() as sess: sess.run(init) for epoch in range(num_epochs): avg_loss = 0. total_batch = int(mnist.train.num_examples/batch_size) for i in range(total_batch): batch_x, batch_y = mnist.train.next_batch(batch_size=batch_size) batch_x = batch_x.reshape((batch_size, timesteps, 28)) _, loss_ = sess.run([optimizer, loss], feed_dict={X: batch_x, Y: batch_y}) avg_loss += loss_ / total_batch if epoch % 5 == 0: acc = sess.run(accuracy, feed_dict={X: batch_x, Y: batch_y}) print("Epoch:", '%04d' % (epoch+1), "loss={:.6f}".format(avg_loss), "accuracy={:.6f}".format(acc)) print("Optimization Finished!") test_data = mnist.test.images.reshape((-1, timesteps, 28)) test_label = mnist.test.labels print("Testing Accuracy:", sess.run(accuracy, feed_dict={X: test_data, Y: test_label})) ``` 以上是使用Tensorflow搭建LSTM神经网络的步骤,可以根据实际需求进行调整和修改。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cyril_KI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值