Transformer的前世今生 day04(ELMO、Attention注意力机制)

ELMO

前情回顾

  • NNLM模型:主要任务是在预测下一个词,副产品是词向量
  • Word2Vec模型:主要任务是生成词向量
    • CBOW:训练目标是根据上下文预测目标词
    • Skip-gram:训练目标是根据目标词预测上下文词

ELMO模型的流程

  • 针对Word2Vec模型的词向量不能表示多义词的问题,产生了ELMO模型,模型图如下:
    在这里插入图片描述
  • 通过不只是训练单单一个单词的Q矩阵,而是把这个词的上下文信息也融入到这个Q矩阵中,从而解决一词多义的问题
  • 注意:左侧的LSTM是融入上文信息,右侧的LSTM是融入下文信息。E已经是将独热编码经过一层Q矩阵得到的
  • 在我们做具体任务T时,会先将E1、E2、E3三层的特征信息做一个叠加之后,得到新的词向量K,其中(E2、E3为双向的句法和语义特征),所以K1为第一个词的词向量,且包含了这个词的单词特征、句法特征、语义特征
  • 注意:在Word2Vec中,只是单纯将几个连续的单词按顺序拼接输入,所以只有这个单词的词向量,并没有上下文信息的叠加

ELMO模型怎么使用

  • 虽然同一个词的单词特征相同,但是在不同句子中的上下文信息会不同,也就代表着最后的词向量K会不同,如下:
    在这里插入图片描述
  • 我们可以用训练好的ELMO模型,去掉该模型针对任务的改造部分,比如只选用T层往下的部分,用它来替换下图其他任务中的W到e的这一部分,即替换之前Word2Vec预训练部分,从而实现ELMO模型的预训练效果,解决一词多义问题:
    在这里插入图片描述

Attention注意力机制

  • 我看这张图,注意力可以被可视化为下图:
    在这里插入图片描述
  • 其中:想要查询这张图中的部分原始图像(查询对象Q),这张图中红色的部分(Key),红色部分所具体指的在原图中的部分(Value)
    • 注意:Key和Value有着某种联系,是可以做对应的。如由于原图中有很多的信息(Values),这些Values可以拆分为Key-Value键值对
    • 所以,查看哪些V对Q比较重要,即哪些V与Q相似,就可以转换成查看哪些K与Q相似,而计算相似度我们一般采用点乘的方法
    • 所以QK点乘才能近似于QV点乘,即才能知道哪些V比较重要
      在这里插入图片描述
  • 上图的流程为:传入一个查询Q,计算Q和K的点乘s(K与V有对应关系),进行softmax归一化得到对应概率a,乘上对应V,最后做一个汇总,得到整体的V’,即最后的注意力V‘,公式如下:
    V ′ = ( a 1 , a 2 , ⋯ , a n ) ∗ + ( v 1 , v 2 , ⋯ , v n ) = ( a 1 ∗ v 1 + a 2 ∗ v 2 + ⋯ + a n ∗ v n ) V' = (a_1,a_2,\cdots,a_n)*+(v_1,v_2,\cdots,v_n) = (a_1*v_1+a_2*v_2+\cdots+a_n*v_n) V=(a1a2an)+(v1v2vn)=(a1v1+a2v2++anvn)
  • 而这个新的V’就包含了原图中,哪些重要,哪些不重要的信息,最后就可以用带有注意力的图来代替原图
    在这里插入图片描述
  • 这里softmax要除 d k \sqrt{d_k} dk 是因为,在softmax中,如果两个数的差距比较大,那么归一化后,概率差距会特别大,这很不合理,所以我们通过除 d k \sqrt{d_k} dk 来缩小两个数之间的差距,这样能减小它们之间的概率差距,如下图:
    在这里插入图片描述

参考文献

  1. 08 ELMo模型(双向LSTM模型解决词向量多义问题)
  2. 09 什么是注意力机制(Attention )
  • 4
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
传统的CNN(卷积神经网络)注意力机制Transformer注意力机制是两种不同的模型结构,它们在处理序列数据时有着不同的特点和应用场景。 传统的CNN注意力机制主要应用于计算机视觉领域,通过卷积操作来提取图像中的局部特征,并通过池化操作来减少特征的维度。CNN注意力机制可以通过卷积核的权重来决定对不同位置的特征进行不同程度的关注,从而实现对图像中不同区域的重要性加权。这种注意力机制在图像分类、目标检测等任务中取得了很好的效果。 而Transformer注意力机制则主要应用于自然语言处理领域,特别是在机器翻译任务中取得了巨大成功。Transformer注意力机制通过自注意力机制(self-attention)来对输入序列中的不同位置进行关注度计算,从而实现对不同位置的信息交互和整合。Transformer模型通过多层堆叠的自注意力层和前馈神经网络层来实现对序列数据的建模和特征提取。 相比传统的CNN注意力机制Transformer注意力机制具有以下几个优势: 1. 长程依赖建模能力:Transformer模型通过自注意力机制可以捕捉到输入序列中不同位置之间的长程依赖关系,从而更好地理解序列中的上下文信息。 2. 并行计算能力:由于自注意力机制的特性,Transformer模型可以并行计算不同位置之间的注意力权重,从而加速模型的训练和推理过程。 3. 可解释性:Transformer模型中的注意力权重可以直观地表示不同位置之间的关注度,从而提供了一种可解释性较强的特征表示方式。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

丿罗小黑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值