统计学中常见的英文缩写

By joey周琦 | http://blog.csdn.net/u011467621

在看英文概率书籍时候遇见上述词汇,概念有所不清,下面我总结下

  • pmf:离散随机变量的概率密度函数,也有人翻译为概率质量函数。常见形式:
    这里写图片描述
  • Cpmf:就是离散随机变量的累积分布函数,不连续。

  • Pdf:连续随机变量的概率密度函数,常见形式如高斯概率密度函数。
    这里写图片描述

  • Cdf:连续随机变量的累积分布函数(分布函数)。就是对pdf的积分,形式如:
    这里写图片描述
  • Corelation coefficient:相关系数。如下式:
    这里写图片描述
    其中,E是数学期望,cov表示协方差,和 是标准差
  • iid = independent identically distributed 独立同分布。

未完待续

<think>好的,用户之前问过“调用的英文缩写”,现在又问“Inference缩写”。我需要先确定用户的需求。可能用户在学习计算机科学或者编程相关的知识,特别是术语的缩写。之前我解释了CALL,现在用户需要知道Inference的缩写。 首先,我得确认Inference在不同领域的常见缩写是什么。在计算机领域,尤其是机器学习和人工智能中,Inference通常没有标准的缩写,但有时候会简写成INFER或者直接使用全称。可能需要检查是否有其他领域使用不同的缩写,比如统计学或者逻辑学,但通常在这些领域也是用全称。 然后,用户可能看到某些文档或代码中用了缩写,想知道是否正确。比如在模型部署时,INFER可能被用作变量名或函数名。需要解释清楚虽然有时会用INFER,但并不是广泛接受的缩写,建议在正式场合使用全称以避免混淆。 另外,用户可能对模型推理过程的具体步骤或应用场景感兴趣,比如在深度学习中的推理阶段。这时候需要分点说明,比如硬件加速、优化方法等,帮助用户全面理解。 还要考虑用户可能的后续问题,比如Inference和Training的区别,或者如何优化推理性能,所以回答中可以提前提及这些点,让用户有更深入的信息参考。 最后,保持回答结构清晰,符合之前用户要求的格式,使用中文,正确应用LaTeX,比如变量用$...$,独立公式用$$...$$。确保内容准确,同时举例说明,比如TensorFlow或PyTorch中的实际应用,帮助用户更好地理解。</think>**Inference** 的常见英文缩写为 **INFER**。以下是详细说明和应用场景: --- ### 1. **基本定义** - **推理(Inference)** 指**通过已知信息推导出结论的过程**,常见于以下领域: - **人工智能(AI)**:模型基于训练数据对新输入进行预测(如分类、回归)。 - **逻辑学**:从前提推出结论(如演绎推理、归纳推理)。 - **统计学**:通过样本数据推断总体特征(如假设检验)。 --- ### 2. **核心应用场景** #### (1) **AI/机器学习中的推理** - **模型推理(Model Inference)**:训练后的模型对新数据执行预测。 - 示例代码(伪代码): ```python prediction = model.infer(input_data) # 调用推理方法 ``` - 框架支持: - TensorFlow:`model.predict()` - PyTorch:`model.eval() + torch.no_grad()` #### (2) **逻辑推理** - 形式化规则应用(如 $P \rightarrow Q, P \vdash Q$)。 - 工具示例:自动定理证明器(ATP)。 #### (3) **统计推断** - 参数估计(如 $\mu = \bar{X} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}}$)。 - 假设检验(如 $p$ 值计算)。 --- ### 3. **缩写使用规范** - **INFER** 多用于非正式场景(如代码注释、技术讨论),**正式文档通常保留全称**。 - 注意区分其他缩写: - **TRAIN**(Training):模型训练阶段。 - **OPT**(Optimization):优化过程。 --- ### 4. **AI推理的底层流程** 1. **前向传播**:输入数据通过神经网络层计算输出。 $$ y = f_{\theta}(x) $$ (其中 $f_{\theta}$ 为模型,$x$ 为输入,$y$ 为预测值) 2. **计算资源**: - CPU/GPU 并行计算 - 专用硬件(如 TPU、NPU) --- ### 5. **性能优化技术** - **模型压缩**:量化(Quantization)、剪枝(Pruning)。 - **硬件加速**:TensorRT、ONNX Runtime。 - **批处理(Batching)**:提升吞吐量。 --- ### 6. **常见问题** #### Q:推理(Inference)和训练(Training)的区别? - **训练**:通过损失函数反向传播调整模型参数($\theta$)。 - **推理**:固定参数 $\theta$ 后仅执行前向计算。 #### Q:边缘设备上如何优化推理速度? - 使用轻量级模型(如 MobileNet)。 - 启用硬件加速(如 Core ML 对 Apple 芯片的适配)。 --- 如需特定领域(如深度学习框架实现细节)的扩展解释,可进一步说明需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值