FCN&U-Net

1.什么是语义分割?
语义分割是在像素级别理解图像。
这里写图片描述这里写图片描述

2.论文地址
FCN
FCN中文翻译版
U-Net

3.详解
传统CNN是利用卷积层+池化层+全连接层最后用softmax实现分类。而FCN则将CNN中的全连接层替换为卷积层,故称为全卷积神经网络(Fully Convolutional Networks)。
这里写图片描述
这里写图片描述

Upsample:简单来说就是pooling的逆过程upsample采样后数据数量增多。FCN作者在论文中讨论了3种upsample方法,最后选用的是反卷积的方法(FCN作者称其为后卷积)使图像实现end to end,可以理解upsample就是使大小比原图像小得多的特征图变大,使其大小为原图像大小。

这里写图片描述

上图的第一行是进行了conv1-5和pool1-5之后在进行conv6-7,此时feature map大小为1*1,故进行了一次放大32倍的upsample(原图是32*32)
第二行是将conv7变为2*2后与poo4 进行merge操作,然后进行一次放大16倍的upsample
第三行是将conv7、pool4变为4*4后再与pool3进行merge操作然后进行一次放大8倍的upsample。

三种效果如下图所示
这里写图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值