语义分割:FCN与U-Net介绍与对比

FCN

FCN的特点:

卷积神经网络结尾使用全连接层,将特征图转化为一个长度为类别总数的向量,可以实现对整张图片进行分类。全卷积神经网络的目标是进行语义分割,为了实现这一点,需要对每个像素进行独自分类,因此使用卷积层代替全连接层,因为卷积操作能够一定程度保留原图片中的位置信息,经过卷积操作后,可以对特征图片进行上采样,还原回原来的图片大小,所以可以实现端到端的语义分割

跳跃链接:

特征图经过下采样后,经过替换全连接层的卷积层,如果直接上采样至原图尺寸,会影响到分割时的精度。因为浅层特征包含更多关于边界,位置等信息,而深层特征包含更多抽象的类别特征信息。因此通过将下采样为原图1/32尺寸的图片使用1X1的卷积核降低至类别总数的维度,并与上采样的同尺寸图片相加,通过这种方式将浅层特征与深层特征融合起来。经过实验可以得出,经过8倍上采样的FCN可以获得较为精确的边界。

 

 U-Net

U-Net虽然同样使用了编码器-解码器的结构,但是与FCN不同的是,U-Net的网络结构为对称的“U”型。具体来说,U-Net的下采样过程与FCN类似,特征图经过两次卷积操作以及一次池化操作,尺寸缩小为原来的一半,维度扩张为两倍。

但是U-Net的上采样过程与FCN不同,相比起FCN的直接从底层特征图进行32倍或16倍等的上采样,U-Net的上采样过程与下采样过程对称,特征图经过两次卷积以及一次转置卷积操作后,尺寸扩大到原来两倍,维度为原来一半。

同时,U-Net的跳跃链接也与FCN不同。U-Net的跳跃链接将下采样时同尺寸的特征图裁剪后,与上采样时的特征图在维度上融合在一起,并作为解码器的下一个模块的输入。而不是FCN的将特征图相加后,直接上采样至原图的尺寸。

通过这种方式,U-Net的上采样过程中,相比起FCN的直接上采样到原图尺寸,U-Net的上采样有更多的通道,因此权重的调整更加灵活。同时与高层特征图的融合,也使得解码器可以更好的利用位置,边框等信息。 

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

秒回 bot

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值