医学影像数据集对于推动医学影像分析技术的发展、提高医疗服务质量、加速疾病诊断和治疗研究具有重要作用。
医学影像数据集对于大模型的意义主要体现在以下几个方面:
1、提升诊断准确性:
通过训练,大模型可以学习医学影像数据集中的模式和特征,从而提高对疾病的识别和诊断准确性。
2、辅助决策:
大模型能够分析和解读医学影像,辅助医生进行更全面的诊断和治疗决策。
5、多模态学习:
医学影像数据集通常包含多种模态的数据,如文本、图像、视频等,大模型可以通过多模态学习更好地理解和分析医疗信息。
数据集:lumbar-spine-mri|医学影像数据集|机器学习数据集
-
创建时间:2024-09-23
-
数据集介绍:该数据集包含240万份腰椎MRI扫描,重点关注腰椎椎骨和腰椎间盘。扫描附有医学报告,用于诊断脊柱疾病,如退行性脊柱疾病、腰椎退行性疾病和椎间盘突出。数据集强调腰椎区域的脊柱磁共振成像和脊髓管,并使用矢状T2加权图像进行详细脊柱成像。数据集支持分割算法和分类模型,旨在实现准确的自动分割和分类结果。深度学习技术可应用于医学图像,以评估脊柱狭窄、检测退行性变化和分割脊柱结构。脊柱病理包括脊髓压迫、椎管狭窄和其他腰椎脊柱疾病。数据集还包括矢状视图和轴向视图,适用于机器学习和医学诊断任务。数据集内容包括ST000001子文件夹中的9个研究,每个研究包含.dcm和.jpg格式的MRI扫描,DICOMDIR文件包含患者状况信息和文件访问链接,Lumbar_Spine_MRI.pdf包含放射科医生提供的医学报告,.csv文件包含按条件和研究方法分类的研究数量。医学报告包括研究类型、MRI机器、患者人口统计信息、疾病简要病史、病例描述、初步诊断和进一步行动的建议。所有患者同意发布数据,数据未识别。
数据集:Polyp-Gen Dataset|医学影像数据集|息肉检测数据集
-
创建时间:2024-09-12
-
数据集介绍:Polyp-Gen数据集是一个用于内窥镜数据集扩展的真实且多样化的息肉图像生成数据集。该数据集包含55,883个样本,其中包括29,640个息肉帧和26,243个非息肉帧。数据集经过筛选,去除了低质量的图像,如模糊、反射和重影效果。
数据集:Calgary Campinas 359 Dataset|医学影像数据集|脑组织分割
-
创建时间:2024-08-19
-
数据集介绍:该数据集包含用于脑组织分割的MRI扫描。它包括多种MRI序列,并专门为头骨剥离目的进行了整理。
数据集:IST-3 CT Head Scans|医学影像数据集|中风研究数据集
-
创建时间:2024-08-02
-
数据集介绍:IST-3 CT头部扫描数据集由爱丁堡大学临床脑科学中心创建,包含10,659个CT系列,用于研究颅内动脉钙化的分割。数据集来源于第三届国际中风试验(IST-3),涉及3035名急性缺血性中风患者的非增强CT扫描。数据集创建过程中,通过与模板配准和质量控制,确保了数据的有效性和准确性。该数据集主要用于支持深度学习方法在中风风险评估中的应用,特别是在颅内动脉钙化的自动量化方面。
数据集:HAM10000|医学影像数据集|机器学习数据集
-
创建时间:2024-07-27
-
数据集介绍:AM10000数据集是一个全面收集的皮肤镜图像集合,用于皮肤病变分类,广泛应用于医学影像和机器学习领域。该数据集包含多种皮肤病变,旨在推动皮肤病学研究,特别是皮肤癌的诊断。数据集由10,000张高分辨率的皮肤病变图像组成,来源多样,有助于训练稳健的机器学习模型,使其能够很好地泛化到未见过的数据。数据集的主要挑战是其显著的不平衡性。
数据集:brain-tumour-MRI-scan|医学影像数据集|肿瘤识别数据集
-
创建时间:2024-07-21
-
数据集介绍:该数据集包含7023张人类脑部MRI图像,分为4个类别:胶质瘤、脑膜瘤、无肿瘤和垂体瘤。数据集由三个来源组合而成:Figshare、SARTAJ数据集和Br35H。训练集和测试集分别包含不同类别的图像文件。
数据集:Chest X-ray Images (Pneumonia)|医学影像数据集|深度学习
-
创建时间:2024-07-13
-
数据集介绍:该项目使用的数据集来自Kaggle,包含两类胸部X光图像:正常和肺炎。数据集分为训练集和测试集,用于训练和评估深度学习模型,以检测肺炎。
数据集:MIMIC-CXR-JPG, IU X-ray, MIMIC-ABN|医学影像
-
创建时间:2024-06-07
-
链接地址:MIMIC-CXR-JPG, IU X-ray, MIMIC-ABN, XRG-COVID-19, HistGen WSI|医学影像数据集|
-
数据集介绍:MIMIC-CXR-JPG是一个大型公开可用的标记胸部放射图像数据库。IU X-ray是一个用于分布和检索的放射学检查集合。MIMIC-ABN用于学习胸部X光异常发现的视觉-语义嵌入报告。XRG-COVID-19是一个基于扩散的半自回归变换器,用于自动放射学报告生成。HistGen WSI是一个通过局部-全局特征编码和跨模态上下文交互生成组织病理学报告的数据集。
数据集:HAND MRI Dataset (PIANO)|医学影像数据集|生物力学
-
创建时间:2024-06-25
-
数据集介绍:这是一个用于PIANO和NIMBLE项目的手部MRI数据集,包含MRI原始体积、骨掩膜体积、3D关节标注等,用于研究手部骨骼和肌肉的参数化模型。
数据集:RAOS|医学影像数据集|器官分割数据集
-
创建时间:2024-06-20
-
链接地址:RAOS|医学影像数据集|器官分割数据集
-
数据集介绍:RAOS数据集是由中国电子科技大学和上海AI实验室合作创建,包含413个腹部CT扫描数据,涵盖约80k 2D图像和8k 3D器官标注,涉及19种不同器官。该数据集特别关注临床挑战性案例,如器官切除后的情况,旨在评估模型在复杂场景下的鲁棒性。数据集的创建过程包括由资深肿瘤学家手动标注,确保了数据的高质量和准确性。RAOS数据集的应用领域主要集中在腹部器官分割,特别是在放射治疗规划中,以提高诊断和治疗的精确性。
数据集:SAT-DS|医学图像分割数据集|医学影像数据集
-
创建时间:2024-06-03
-
数据集介绍:SAT-DS是一个医学数据收集,包含72个公共分割数据集,涵盖超过22K 3D图像,302K分割掩码和497个类别,涉及3种不同模态(MRI, CT, PET)和8个人体区域。
数据集:Anonymous2024NipsUser/3MAD-Tiny-1K|医学影像数据集
-
更新时间:2024-05-26
-
数据集介绍:该数据集包含多种医学图像数据,涵盖皮肤镜检查、阿尔茨海默病MRI、脑部MRI等多个领域,每个类别包含60个图像示例。数据集特征包括标识符、文件名、原始属性等,特别地,image特征用于存储图像数据。数据集的总下载大小约为4.28亿字节,实际数据集大小约为2.13亿字节。
数据集:Anonymous2024NipsUser/3MAD-66K|医学影像数据集|
-
更新时间:2024-05-26
-
数据集介绍:该数据集包含多种医学影像数据,涵盖皮肤、脑部、胸部等多个部位,共有18个子数据集,每个子数据集包含不同数量的医学影像示例,用于支持医学影像分析和研究。
数据集:医学影像数据集集锦|医学影像数据集|数据集数据集
-
更新时间:2024-05-24
-
数据集介绍:本项目的目标是整理一个医学影像方向数据集的列表,提供每个数据集的基本信息,并在License允许的前提下提供不限速下载。项目按照数据集模态或关注的器官分类。当前共收录约 20 个方向的 80+ 个数据集。
数据集:Medical-Imaging-Datasets|医学影像数据集|数据分析数据集
-
更新时间:2024-05-21
-
数据集介绍:这是一个公开的医学影像数据集集合,旨在为医学影像分析领域的研究人员、医疗专业人员和开发者提供一个全面且有价值的资源。
数据集:NIH Chest X-ray dataset|医学影像数据集|胸部疾病数据集
-
创建时间:2024-05-17
-
数据集介绍:该数据集包含超过100,000张胸透X光图像,带有14种不同的胸腔疾病标签。
数据集:oxkitsune/open-kbp|医学影像数据集|放射治疗数据集
-
更新时间:2024-05-17
-
数据集介绍:Open Knowledge-Based Planning数据集是一个用于知识基础规划的开源数据集,包含多种医学图像和相关数据,如ct、剂量分布、体素尺寸等。数据集分为训练集、验证集和测试集,分别包含200、40和100个样本,总数据量超过400GB。
数据集:medical-dataset|医学影像数据集|临床研究数据集
-
创建时间:2024-04-28
-
数据集介绍:包含多个医学影像数据集,如CheXpert、ChestXray-NIHCC等,涉及X光、CT、MRI等多种医学影像数据,用于研究和解决临床问题。
数据集:TrainingDataPro/brain-mri-dataset|肿瘤检测数据集
-
更新时间:2024-04-25
-
数据集介绍:该数据集包含10个研究,涉及不同角度的脑部MRI扫描图像,这些图像来自患有癌症的个体。每个研究都由医生标注,并附有PDF格式的报告。数据集还包括DICOMDIR文件,其中包含患者状况的信息和文件链接,以及一个包含研究ID和文件数量的CSV文件。此外,数据集还提供了由放射科医生提供的医学报告,其中包括患者的个人信息、病例描述、初步诊断和进一步行动的建议。数据集对于肿瘤学、放射学和医学影像领域的研究人员和医疗专业人员具有重要价值,可用于开发和评估新的成像技术、训练和验证机器学习算法、分析肿瘤对不同治疗的反应等。
数据集:医学影像三分类数据集-新冠肺炎 X 光片数据集|医学影像
-
更新时间:2024-03-06
-
数据集介绍:我们创建了一个包含COVID-19阳性病例、正常和病毒性肺炎胸片图像的数据库。所有的X光片图像都将发布在Kaggle仓库中。
数据集:CT-ORG|医学影像数据集|器官分割数据集
-
创建时间:2024-01-19
-
数据集介绍:3D CT, 140 Cases, 6 Categories of Organ Segmentation.
数据集:BIMCV-COVID19+|COVID-19数据集|医学影像数据集
-
创建时间:2024-01-07
-
数据集介绍:BIMCV-COVID19+数据集是一个大型数据集,包含COVID-19患者的胸部X光图像(CR,DX)和计算机断层扫描(CT)成像,以及他们的放射学发现、病理、聚合酶链反应(PCR)、免疫球蛋白G(IgG)和免疫球蛋白M(IgM)诊断抗体测试和放射学报告,来自瓦伦西亚地区医学影像数据库(BIMCV)。发现被映射到标准的统一医学语言系统(UMLS)术语,并覆盖了广泛的胸部实体,与之前数据集中注释的实体数量相比,数量大大增加。图像以高分辨率存储,实体以医学影像数据结构(MIDS)格式进行局部化,并带有解剖标签。此外,23张图像由一组专家放射科医生进行了注释,以包括放射学发现的语义分割。此外,提供了包括患者的人口统计信息、成像研究的投影类型和采集参数等在内的广泛信息。这些数据库迭代包括21342次CR、34829次DX和7918次CT研究。