【双目深度估计】——原理理解

转载自:双目测距的基本公式推导
尊重原创,请看原文

0. 基本假设

假设双目系统是标准形式,即:

  • 两相机内参数相同,即焦距、分辨率等参数一致;
  • 两相机光轴平行;
  • 成像平面处于同一水平线;

两相机只存在X轴方向上的平移变换。

1. 几何法

在这里插入图片描述
P是待测物体上的某一点,OR与OT分别是两个相机的光心,点P在两个相机感光器上的成像点分别为P和P’(相机的成像平面经过旋转后放在了镜头前方),f为相机焦距,B为两相机中心距,Z为我们想求得的深度信息。
在这里插入图片描述
在这里插入图片描述
公式中,焦距f和摄像头中心距B可通过标定得到,因此,只要获得了视差d=XR−XT,就可以计算出深度Z。

### 结合目标检测和深度估计的方法 #### 方法概述 为了实现更精确的视觉感知或3D场景理解,可以采用一种集成方法,该方法结合了目标检测和深度估计两种技术。具体来说,在交通场景中,可以通过改进的YOLO模型进行目标检测,并利用立体匹配或其他深度估计算法获取目标的深度信息[^3]。 对于单目图像而言,存在一个框架由两个深度网络构成:一是用于检测和定位场景中的对象的YOLOv5网络;二是用来计算估计深度图像以检测相对距离的深度自动编码器网络。此框架在室外场景的真实图像评估中表现出良好的性能,准确率达到了96%,正确绝对距离的均方根误差(RMSE)为0.203米[^2]。 当涉及到双目系统时,则可将YOLOv5检测到的目标框与双目匹配获得的深度数据相联系,依据相机参数以及视差原理来确定目标的确切位置及其至摄像头间的实际间距[^1]。 #### 应用实例——3D物体识别和距离测量 在一个典型的自动驾驶应用场景里,车辆前方安装有摄像装置采集实时视频流作为输入源给到上述提到的联合模型: - **目标检测部分**负责标记出画面内的所有潜在障碍物(比如其他汽车、行人等),并给出它们的位置坐标; - 同步运行的**深度估计模块**会生成一张对应于当前帧的稠密深度图,这张图能够反映出不同区域离镜头有多远的信息; 最后一步就是把两者结合起来做进一步分析处理,例如通过查找每个被标注出来的实体在其周围像素上的平均深度值从而得知它到底处于哪个空间层次上,进而完成精准的空间布局解析工作。 ```python import torch from yolov5 import YOLOv5 from depth_estimator import DepthEstimator def detect_and_measure_distance(image_path): yolo_model = YOLOv5('yolov5s.pt') # 加载预训练好的YOLOv5模型 depth_model = DepthEstimator() # 初始化深度估计模型 img = load_image(image_path) detections = yolo_model.detect(img) depths = depth_model.predict_depth(img) results = [] for det in detections: bbox, label, confidence = det['bbox'], det['label'], det['confidence'] center_x = int((bbox[0]+bbox[2])/2) center_y = int((bbox[1]+bbox[3])/2) object_depth = depths[center_y][center_x] result = { 'object': label, 'distance': calculate_real_world_distance(object_depth), 'location': get_3d_coordinates(center_x, center_y, object_depth) } results.append(result) return results def calculate_real_world_distance(depth_value): pass # 这里应该根据具体的相机内参矩阵转换成真实世界单位的距离 def get_3d_coordinates(x_pixel, y_pixel, z_depth): pass # 利用三角法或者其他方式从二维平面映射回三维空间坐标系 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值