<Principles of fMRI 1>课程笔记5 MR物理基础

MRI技术基于强大的磁场和射频脉冲,通过测量原子核的磁化强度变化来创建图像。质子在磁场中排列并受到RF脉冲影响,经历弛豫过程,产生不同类型的图像,如T1、T2加权图像。T2*在fMRI中用于反映血流和氧合状态,揭示大脑功能。MRI在医学研究和临床诊断中具有广泛的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

核磁共振成像(Magnetic Resonance Imaging,MRI)是一种多功能的成像方式,既可以用来研究大脑结构,也可以用来研究大脑的功能。我们可以通过不同的大脑图像来强调不同组织特性的对比(即可以分辨不同的大脑组织),而这些图像都是用MR scanner来获取的。

那么MR scanner到底是什么呢?

同学们注意了:简单来说,MR scanner就是一个带有很强的磁场(1.5-7.0 Tesla)的电磁体。为了让同学们理解这个磁场到底有多强,我来给大家举个栗子。我们知道地球的磁场是0.00005 Tesla,所以只是3 Tesla就已经是地球磁场的60000倍了。

图片

图1 MR scanner

MRI技术是建立在一些核心的物理学基础上的。为了理解这些物理学基础,我们首先要先学习单个原子核及其对MR信号的影响,在MRI中,我们一般关注的是氢原子(它只有一个质子,而且它在血液中数量庞大,产生的信号较强)。

质子可看作是一个一直在自转的带正电球体,它们会产生一个沿着旋转轴的净磁矩。如下图

图片

图2 质子的旋转

在MR中,我们测量的是一个volume里面所有的原子核的净磁化强度M,这个M还可以看成是一个矢量,它有两个成分:与磁场平行的纵向成分(z轴)、与磁场垂直的横向成分(x-y平面)。

图片

图3 x-y-z坐标系上的矢量

在MRI过程中,原子核的磁矩会经历3种状态(如果加上弛豫过程就是4种):

1. 在没有任何外界磁场的干扰下,原子核的磁矩的朝向是随机的,不存在净磁化强度,如下图

图片

图4 随机朝向的磁矩

2. 当它们置于强大的磁场内时,原子核会随磁场的方向排列,此时会在磁场方向产生一个纵向的净磁化强度,如下图

图片

图5 随磁场方向排列的磁矩

还要注意的一点是,此时原子核以由拉莫频率(Larmor frequency)决定的一个统一频率旋进(precess),但它们各自是处于随机的相位的,如下图

图片

图6 频率相同但相位随机的正在旋进的原子核

3. 在强磁场中加入一个射频脉冲(RF pulse),导致纵向磁场减弱,并建立起一个新的横向磁场,结果就是原子核被迫移到同一个相位,并向x-y平面倾斜(tip),如下图:

图片

图7 被RF脉冲倾斜的原子核

由于RF脉冲会在原来的系统中加入新的磁场,打破了原有系统的平衡。在RF脉冲结束后,系统会开始回到其原来的平衡状态,该过程被称为“弛豫”(Relaxation)

在弛豫过程中,横向磁化强度开始衰减(横向弛豫),纵向磁化强度增长至原来的大小(纵向弛豫)。在这个过程中,信号就产生了,并被接收器线圈测量到。

纵向弛豫是净磁化强度随着原子核自转回到其原来状态而在纵向(z轴)上呈指数增长,其增长到原磁化强度的63%所需的时间称为时间常数T1,如下图:

图片

图8 纵向弛豫

横向弛豫是因为原子核移相而导致的在x-y平面上的净磁化强度呈指数衰减,其磁化强度从100%衰减到37%所需的时间称为时间常数T2,如下图:

图片

图9 横向弛豫

通过改变我们激发原子核的间隔时间TR和激发后到我们开始收集数据的时间TE,就可以控制哪些组织的特征得到强调。

测量到的信号大约是

图片

,其中T1和T2是组织的特性。

举个例子。如果我们选择了一个长TR和一个短TE,那指数就大约是1,信号就跟M0成比例,得到的质子密度图就如下图中的左上角部分。如果我们选择一个长TR和长TE,就会得到所谓的T2加权图像,此时第二个指数就很重要,第一个指数就没什么用处了。如果我们选择一个短TR和短TE,就会得到所谓的T1加权图像。正是因为这些图像关注不同的组织特性,所以它们才显得很不一样。

图片

图10 不同的TR和TE所构建的图像

MRI的目标是构建一幅图像或者是一个与空间定位对应的数字矩阵,这幅图像描述了样本的原子核的一些特性的空间分布,这可能是原子核的密度或者它们所属的组织的弛豫时间。

在fMRI中我们还有另一个对比,叫做T2*,它是T2和主磁场相互作用产生的结果。因为T2*很重要,所以在这里稍微再讲一下T2*。

因为脱氧血红蛋白会抑制MR信号,因此脱氧血红蛋白浓度提高就会导致fMRI信号的减弱,我们把这种信号的减弱称为T2*衰减,它是由于脱氧血红蛋白导致主磁场的紊乱而加快的信号衰减。实际上BOLD fMRI测量的就是在富含氧合血红蛋白与富含脱氧血红蛋白的血液之间其T2*信号的差异。而扫描器可以设置成消除或者强化这些磁场的紊乱,后者就是BOLD fMRI的基础。

讲到这里又不得不说一下T2和T2*的区别。简单来说,因为不可避免的整体磁场的不均匀和氢原子核与周围其他原子核自旋的交互作用,使得氢原子核的移相更快,从而导致了信号的衰减加速,这样的信号衰减就是T2*衰减。换句话说,T2*衰减就是没有对氢原子核的移相进行任何矫正的一种信号衰减。而T2衰减是比T2*衰减更慢的信号衰减,T2是一种要对磁场的不均匀进行矫正才能获得的一种信号。

根据主要对T1、T2或T2*敏感度不同,我们可以构建出不同的图像。因为T1和T2会因组织不同而有所差异,它们可以表示出CSF与灰质和白质之间的边界。而T2*对血流和氧合作用比较敏感,它可用于对大脑功能的成像。所以T2*在接下来的课程中会扮演很重要的角色。

### Maven Dependency Purpose The `com.lmax:disruptor:3.4.2` library is a high-performance inter-thread messaging library used to implement the LMAX Disruptor pattern, which facilitates efficient message passing between threads within Java applications[^1]. This disruptor framework aims at reducing contention points and memory barriers that typically occur when using traditional queue-based approaches. #### Key Features of Disruptor Library - **High Performance**: Designed specifically for low-latency environments where performance is critical. - **Scalability**: Supports multiple producers and consumers efficiently without significant overheads associated with locking mechanisms found in conventional concurrent collections like LinkedBlockingQueue or ArrayBlockingQueue. - **Memory Efficiency**: Minimizes garbage collection pressure by reusing objects rather than creating new ones continuously during operation. To integrate this functionality into projects built on top of Apache Maven build tooling system, developers include an XML snippet inside their project's POM (Project Object Model) file specifying group ID (`com.lmax`), artifact ID (`disruptor`) along with version number (`3.4.2`). ```xml <dependency> <groupId>com.lmax</groupId> <artifactId>disruptor</artifactId> <version>3.4.2</version> </dependency> ``` This configuration ensures all necessary classes from the specified package are available throughout development phases including compile time checks as well runtime execution context enabling seamless utilization of advanced features provided out-of-the-box such as event factories shown below: ```java public class LongEventFactory implements EventFactory<LongEvent> { @Override public LongEvent newInstance() { return new LongEvent(); } } ``` By incorporating these components through proper setup via Maven dependencies management process, software engineers can leverage powerful abstractions offered by Disruptor while maintaining clean codebases adherent best practices around dependency injection principles[^2].
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值