脑与脑之间的默契:基于多层网络的跨脑连接分析

摘要

社会互动在人类社会中扮演着至关重要的角色,涉及个体之间复杂的动态关系。为了在神经层面深入理解社会互动,研究人员已经在多种社会情境中使用了超扫描技术。这些研究主要集中在脑间同步性和配对功能脑网络效率的分析上,探讨了两人组(dyads)之间的互动。然而,这些方法可能无法完全捕捉多方互动的复杂性,可能导致对网络间差异的理解存在空白。为了克服这一局限性,本研究旨在通过引入多层网络方法的方法学改进来填补这一空白。该方法能够从多个网络中提取特征,帮助更全面地分析复杂的群体互动。本研究采用该方法分析了社会行为过程中三人组(triad)的情境,以识别可量化的群体互动指标。此外,为了验证所提出方法的有效性,本研究将三人组条件下的多层网络与无群体同步的配对条件进行了比较,重点分析了α波和β波之间的统计差异。脑间网络和群体网络之间的相关性分析表明,该方法能够准确反映实际行为同步性的特征。研究结果表明,配对脑同步性和群体互动的测量可能呈现出不同的趋势,这为群体同步性的解释提供了宝贵的见解。

引言

社会互动是人类行为的核心,以人际同步的形式融入日常生活中。人际行为同步及其潜在机制之间的关系引起了广泛关注,促使研究人员进一步探索了脑间同步在人际互动中的功能意义。为了研究社会互动的神经动态,基于脑电图(EEG)的超扫描技术通过同时记录多个受试者的神经活动,使得在真实社会互动中研究神经机制成为可能。

这些超扫描研究传统上分析了社会互动中的相位同步性。它们利用脑间活动的功能连接性,采用诸如相干性(Coh)、锁相值(PLV)和循环相关系数(CCorr)等度量指标。这些分析通过比较不同大脑之间的神经特征,估计跨频率和时频域的神经信息处理的相似性。有些研究则通过连接性估计脑间同步性的空间强度,利用效率、可分性和模块化等度量指标。

然而,现有的超扫描研究在捕捉超过两人组的社会动态方面存在方法学上的局限性。大多数涉及三人以上群体的超扫描研究仅仅多次测量了两人组的大脑同步效应。例如,研究人员通过脑间耦合研究了不同区域和频段的神经(同步)效应,以理解社会同步与协调行为。具体而言,本研究采用图论方法从解剖和功能连接性上解释脑同步性。功能网络表明,同步性的有效性受到认知间功能流动的影响。该方法旨在根据每个脑间网络的特性来检查人际同步的连接强度。图论指标在网络中的一些扩展仅限于多路复用网络,用于建模现实情境中的复杂多模态系统,例如信息传播的动态和合作行为的出现。这些研究强调了由于相互关系的影响,需要适用于更大规模多路复用的测量方法。此外,脑网络方法应利用多粒子网络分析来估计神经振荡中的信息流。通过将超脑结构划分为脑内和脑间组件矩阵,这种方法更准确地捕捉了同步模式。然而,尽管研究两人组之间的大脑同步性是很有价值的,但它并未完全捕捉到更大群体中常见的社会动态复杂性。现实世界中的社会互动很少局限于两人组,像群体凝聚力、领导力和集体决策等特征需要在更大的群体中进行研究。

为了解决这一局限性,本研究旨在剖析群体互动中的神经活动,这为理解相互连接的大脑活动如何影响群体行为和社会互动提供了新的视角。在多层大脑网络中,主要目标是研究来自不同脑区或同一区域在不同维度(如频率分解或时变特征)下的特定神经活动。每个维度的划分定义了不同的层次,以深入研究这些不同的方面。本研究的目标是探索基于EEG数据的社会互动多层网络的发展,突破传统单一脑网络的局限,并旨在探讨是否可以通过采用反映功能性脑网络社会结构的多层网络来简化长期社会互动的复杂性。该方法建立在双人互动分析的基础上,并将其扩展到适应群体互动的复杂性。本研究将大脑网络视为相互连接的层,以捕捉超越二人互动的群体动态,如图1所示。

图1

材料与方法

超扫描中的多层网络方法

本研究在多层网络方法中引入了一个新视角,假设每一层都是单个大脑中的功能连接(同步)网络。将每个节点表示为EEG通道,每条边表示为功能连接值,从而将每一层构建为一个独立的脑网络。本研究还构建了一个由三个脑网络组成的多层网络,其中层内网络设计为零网络,以专注于层间同步因素,如图1C所示。这种配置生成了一个包含三个个体间同步网络的群体互动网络。本研究利用这个多层网络提取图论特征,从而比较三个个体大脑之间高同步和低同步网络之间的差异。通过消除层内连接并仅关注脑间同步性,本研究精确地分离和测量了支撑社会协调和群体行为的集体神经动态。凭借这些优势,这种多层方法能够为社会互动的神经基础提供更清晰的见解,并增强检测群体成员之间真实同步关系的可靠性。

多层网络的构建

一个具有M层的多层网络可以定义为:

其中,An是第n层的层内网络,Hn,m是从第n层到第m层的层间网络。在本研究中,假设M=3,A是大小为(通道×通道)的零网络,H是大小为(通道×通道)的层间连接网络。因此,多层网络被构建为一个二分图。

网络指标

度(Degree)定义为连接到该节点的链接数量。使用超邻接矩阵,节点i的总度di定义为连接到该节点的所有边(eij)的权重之和,包括层内和跨层连接的边。每层(l,m)节点i与所有其他节点j=1,2,…的层间度(

)定义为:

参与系数(PC)用于量化每个节点对网络各层的贡献,因此它表示网络的整体归一化强度。PC定义为多层度(

),该度是跨层的,且包含n个节点:

参与系数衡量一个节点连接到其自身子网络(层)之外的其他子网络的程度。参与系数衡量脑网络中边的“分布均匀性”,表明功能(同步)处理系统的效率。

全局聚类系数(GCC)是用来衡量网络中节点之间连接紧密程度的一个指标,它计算的是闭三元组(或三角形)在所有三元组(开放和闭合)中的比例。层间聚类系数定义为多层度(

)的平均值。因此,层内聚类系数计算的是每个节点在某一层内的局部聚类系数,而不考虑其他层的情况。节点的层间聚类系数是根据层间边的平均强度来计算的。

特征路径长度(CPL)衡量网络中从一个节点到另一个节点所需的最小边数。其常见的度量方法通常是基于同步性的矩阵元素来计算的。CPL定义为多层度(

),该度是跨层的,且包含n个节点:

网络中所有节点对之间的最短路径长度被称为网络的特征路径长度,它用于衡量网络的功能整合。功能连接矩阵中的高功能整合表明,大脑通过长距离功能连接将专门化和紧密连接(分离)的区域结合起来,以实现更高效的信息处理。

数据集

本研究使用了“课堂中的群体互动数据集”。参与者包括12名健康高中生(7名女生和5名男生,年龄16-18岁)。使用无线EMOTIV EPOC头戴设备(14通道;采样率128Hz,带通滤波0.5-35Hz,陷波滤波;乳突参考,Emotiv Systems Inc)同时记录了12名学生及其老师的EEG。研究使用了14个电极(AF3、AF4、F3、F4、F7、F8、FC5、FC6;T7、T8;O1、O2、P7和P8)。在11天内,记录了4种不同教学风格(教学引导、视频、讲座和讨论)的EEG,每种风格持续2-5分钟。

EEG预处理

使用内置的5阶Sinc数字滤波器进行0.5-35Hz的带通滤波。本研究应用了Infomax独立成分分析(ICA),仅选择具有超高斯活动分布的成分,并使用概率为0.80的IC标签自动去除伪迹,如眼电和肌电等伪迹成分。最后,使用4阶Butterworth滤波器将EEG信号分为以下四个频段:θ(4-8Hz)、α(8-13Hz)、低β(13-20Hz)和高β(20-30Hz)。使用EEGLAB工具箱(v.2022.0)进行预处理分析。在视频、讲座和讨论条件下,使用了特定日期中参与度最高的学生(1、2、3、4、5、6、8、9、9、10和12)的数据(第2、4、6、7、8、9天)。

脑间同步性测量

使用HyPyP Python包(v.0.5.0b1)中的函数计算相干性(Coh)、锁相值(PLV)和循环相关系数(CCorr)。每个频段的值是通过计算对应区域中每对电极和每个频段中的连接矩阵均值来得到的。记录的多通道信号从任务开始后60s起,分为每5s的非重叠时段。

相干性(Coh)是基于傅里叶的传统连接性方法。Welch相干性估计公式为:

其中,|SXY|是信号X和Y之间的交叉谱,SXX和SYY是信号X和Y的自谱。计算相干性时需要对信号进行平方,但这会导致极性信息的丢失。

锁相值(PLV)是相位差异一致性的度量指标,但如上所述,仅观察到两个信号之间存在一致的相位关系并不意味着它们之间存在协方差或信息交换。

其中,θ(t,n)为相位差(ϕ1( , )-ϕ2( , ))。

循环相关系数(CCorr)是周期性数据的Pearson积矩相关系数的直接对应,其公式为:

其中

分别是通道1和2的平均方向。

结果

大脑同步

为了验证每种教学风格下EEG信号之间的同步性,本研究计算了每对学生之间EEG通道的同步性。功能连接性(相干性Coh;锁相值PLV;循环相关系数CCorr,滞后从0到+1)代表了EEG通道之间脑同步性的表现。配对同步性的功能连接是基于实际互动计算的,而非同步性的功能连接则是基于相同任务但不同日期的数据计算的,如表1和图2所示。所有频段的同步性差异均具有统计显著性,表明多层方法中使用的子网络之间的差异是正确的。

表1.针对每个类别,计算各频段在所有被试和通道上的功能连接总均值(mean±std)。

图2

为了比较组间所有连续变量,本研究进行了双因素方差分析(ANOVA)。使用Matlab函数(Matlab v.2020a)对组内和组间的事后比较(Pearson检验,α<0.05)进行Bonferroni校正。对于每种同步性测量,本研究比较了互动任务与影响同步性的脑电波之间的统计差异。对于相干性(Coh),同步性条件的效应为F(1,21)=14.92,p<0.001,Bonferroni校正后p<0.05。对于锁相值(PLV),效应为F(1,26)=13.74,p<0.001,Bonferroni校正后p<0.05。对于循环相关系数(CCorr),效应为F(1,23)=14.88,p<0.001,Bonferroni校正后p<0.05。

多层网络和网络指标

本研究旨在验证反映群体互动的多层网络与先前研究中基于成对分析的多层网络之间的比较。在不同条件下,本研究通过群体因素分析,从一个由三个节点(即三元组)组成的多层网络中计算出了四个网络指标。为了减少基于网络大小的网络指标量化差异并确保公平比较,本研究加入了非互动大脑以构建大小相等的多层网络进行比较。本研究通过构建两种不同的多层网络来验证多层网络指标是否能够显示三元组之间的连接:(1)一种是三个个体共享注意力的情况;(2)另一种是两个个体共享注意力,而第三个个体没有互动。通过比较这两种情况,研究展示了它们之间的显著差异。全局聚类系数(GCC)和特征路径长度(CPL)的总平均值如图3和表2所示。

表2.从多层网络中得到的图形指标的总平均值。

图3

在进行双因素ANOVA分析(互动任务×频段),并对组内和组间差异进行事后比较(Bonferroni校正,α<0.05)后,同步性条件对GCC的效应结果如下:对于Coh网络,F(1.45,31.25)=49.25,p<0.001;对于PLV网络,F(3.35,52.15)=5.94,p<0.01;对于CCorr网络,F(2.35,72.75)=6.92,p<0.01。对于CPL,结果为:Coh网络,F(2.42,48.26)=4.75,p<0.01;PLV网络,F(3.3,61.82)=2.95,p<0.05;CCorr网络,F(3,52)=3.14,p<0.05,且经Bonferroni校正后P<0.05。

多层网络与子网络之间的关系

为了观察子网络与多层图指标之间的相关性,本研究旨在通过检查传统成对互动与群体互动指标之间的相关性来验证群体同步性是否成立。本研究使用Pearson相关系数比较了群体互动因素与三个同步性值在各频段之间的线性关系,这种方法使我们能够估计子网络的影响。统计显著性结果如图4和表3所示。

表3.群体同步性与图指标之间的总体平均相关值和显著性值(p<0.05),统计显著性值用粗体显示。

图4

结论

本研究提出了一种基于多层网络的方法,旨在有效测量群体互动中的脑间同步性。研究结果表明,该方法能够适应不同元素配置,其可扩展性突显了多层网络方法在揭示社会神经科学中群体互动的空间和动态方面的潜力。此外,本研究还深入探讨了多层网络与其子网络之间的关系。采用多层网络来表征网络中的群体特征,该网络由多个子网络(层)组成。为了确保子网络特征在多层网络中得到一致的呈现,本研究对图指标与同步性之间的相关性进行了全面分析。分析结果显示,全局聚类系数(GCC)和特征路径长度(CPL)等指标呈正相关。这些发现表明,多脑网络设计能够有效地捕捉信息流的全貌。总体而言,本研究提出了一种利用多层网络来估计群体同步性并构建群体脑网络的新方法。该方法有助于揭示更大群体中的共享表征。本研究相信这种先进的方法将为深入理解群体内复杂的社会互动提供更加细致的洞察。

参考文献:Heegyu Kim, Sangyeon Kim, Sung Chan Jun, Chang S Nam, Is What I Think What You Think? Multilayer Network-Based Inter-Brain Synchrony Approach, Social Cognitive and Affective Neuroscience, 2025, nsaf028, https://doi.org/10.1093/scan/nsaf028

小伙伴们关注茗创科技,将第一时间收到精彩内容推送哦~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值