电场和磁场在交界面上的连续性

根据蔡圣善的《电动力学》第1.6节内容,我们可以得到四个结论公式,分别为:
e n ⃗ ⋅ ( D 1 ⃗ − D 2 ⃗ ) = σ (1) \vec{e_n} \cdot \left(\vec{D_1} - \vec{D_2}\right) = \sigma \tag{1} en (D1 D2 )=σ(1)
e n ⃗ ⋅ ( B 1 ⃗ − B 2 ⃗ ) = 0 (2) \vec{e_n} \cdot \left(\vec{B_1} - \vec{B_2}\right) = 0 \tag{2} en (B1 B2 )=0(2)
e n ⃗ × ( E 1 ⃗ − E 2 ⃗ ) = 0 (3) \vec{e_n} \times \left(\vec{E_1} - \vec{E_2}\right) = 0 \tag{3} en ×(E1 E2 )=0(3)
e n ⃗ × ( H 1 ⃗ − H 2 ⃗ ) = α (4) \vec{e_n} \times \left(\vec{H_1} - \vec{H_2}\right) = \alpha \tag{4} en ×(H1 H2 )=α(4)
其中 σ \sigma σ表示交界面上的电荷面密度, α \alpha α表示界面交线上的电流线密度。 e n ⃗ \vec{e_n} en 表示穿过交界面并且垂直于交界面的法线方向。
上述四个公式可以通过严格的证明得到,这里暂时不给出具体的证明过程,这里详细说明一下这四个公式所表达的物理意义。
等式 ( 1 ) \left(1\right) (1)表明, D ⃗ \vec{D} D 的纵向分量(法线分量)在交界面处不连续。
等式 ( 2 ) \left(2\right) (2)表明, B ⃗ \vec{B} B 的纵向分量(法线分量)在交界面处连续。
等式 ( 3 ) \left(3\right) (3)表明,电场的横向分量(切向分量)在交界面处连续。
等式 ( 4 ) \left(4\right) (4)表明,磁场的横向分量(切向分量)在交界面处不连续。

可能有小伙伴们就有疑问了,为什么他们可以说明连续性,这里还请先阅读这篇—叉乘与点乘的简单理解
等式 ( 1 ) \left(1\right) (1)可以写为:
e n ⃗ ⋅ D 1 ⃗ − e n ⃗ ⋅ D 2 ⃗ = σ \vec{e_n} \cdot \vec{D_1} - \vec{e_n} \cdot \vec{D_2} = \sigma en D1 en D2 =σ
根据点乘的含义, e n ⃗ ⋅ D 1 ⃗ \vec{e_n} \cdot \vec{D_1} en D1 表示向量 D 1 ⃗ \vec{D_1} D1 在法线向量 e n ⃗ \vec{e_n} en 上的投影,同理, e n ⃗ ⋅ D 2 ⃗ \vec{e_n} \cdot \vec{D_2} en D2 表示向量 D 2 ⃗ \vec{D_2} D2 在法线向量 e n ⃗ \vec{e_n} en 上的投影,二者差值为 0 0 0,说明在法线方向上,当它们穿过界面的时候大小没有发生变化,因此它们具有连续性。
类似地,等式 ( 2 ) \left(2\right) (2)右侧显然不为 0 0 0,即可推出 B ⃗ \vec{B} B 不具有连续性。
等式 ( 3 ) \left(3\right) (3)可以写为:
e n ⃗ × E 1 ⃗ − e n ⃗ × E 2 ⃗ = 0 (5) \vec{e_n} \times \vec{E_1} - \vec{e_n} \times \vec{E_2} = 0 \tag{5} en ×E1 en ×E2 =0(5)
我们假设向量 E 1 ⃗ \vec{E_1} E1 可以分解为交界面内的分量和沿法线的分量的组合方式,如:
E 1 ⃗ = E 1 n ⃗ + E 1 t ⃗ \vec{E_1} = \vec{E_{1n}} + \vec{E_{1t}} E1 =E1n +E1t
同理,对于 E 2 ⃗ \vec{E_2} E2
E 2 ⃗ = E 2 n ⃗ + E 2 t ⃗ \vec{E_2} = \vec{E_{2n}} + \vec{E_{2t}} E2 =E2n +E2t
等式 ( 5 ) \left(5\right) (5)可进一步变为:
e n ⃗ × E 1 n ⃗ + e n ⃗ × E 1 t ⃗ − e n ⃗ × E 2 n ⃗ − e n ⃗ × E 2 t ⃗ = 0 (6) \vec{e_n} \times \vec{E_{1n}} + \vec{e_n} \times \vec{E_{1t}} - \vec{e_n} \times \vec{E_{2n}} - \vec{e_n} \times \vec{E_{2t}}= 0 \tag{6} en ×E1n +en ×E1t en ×E2n en ×E2t =0(6)
根绝叉乘的数学运算,显然:
e n ⃗ × E 1 n ⃗ = 0 \vec{e_n} \times \vec{E_{1n}} = 0 en ×E1n =0
e n ⃗ × E 2 n ⃗ = 0 \vec{e_n} \times \vec{E_{2n}} = 0 en ×E2n =0
因此,等式 ( 6 ) \left(6\right) (6)可进一步化简为:
e n ⃗ × E 1 t ⃗ − e n ⃗ × E 2 t ⃗ = 0 \vec{e_n} \times \vec{E_{1t}} -\vec{e_n} \times \vec{E_{2t}}= 0 en ×E1t en ×E2t =0
根据叉乘的含义, e n ⃗ × E 1 t ⃗ \vec{e_n} \times \vec{E_{1t}} en ×E1t 表示向量 E 1 t ⃗ \vec{E_{1t}} E1t 与法线向量 e n ⃗ \vec{e_n} en 所围成的平行四边形的面积,同理, e n ⃗ × E 2 t ⃗ \vec{e_n} \times \vec{E_{2t}} en ×E2t 表示向量 E 2 t ⃗ \vec{E_{2t}} E2t 与法线向量 e n ⃗ \vec{e_n} en 所围成的平行四边形的面积。因为法向量的模为 1 1 1,因此可以得到向量 E 1 t ⃗ \vec{E_{1t}} E1t 和向量 E 2 t ⃗ \vec{E_{2t}} E2t 的长度是一致的,因此我们可以说电场的横向分量(切向分量)在交界面处连续。
同理,等式 ( 4 ) \left(4\right) (4)右侧显然不为 0 0 0,即可推出电场不具有连续性。

如果大家觉得有用,就请点个赞吧~

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的大熊猫

你的鼓励将是我写作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值