麦克斯韦方程场分量公式推导

本文详细介绍了如何推导麦克斯韦方程中Et和Ht的表达式,通过一系列数学运算,包括矢量的点乘、叉乘及结合律的应用,最终简化得到Et和Ht的简洁形式。
摘要由CSDN通过智能技术生成
在无源区域内,麦克斯韦方程组在圆柱坐标系下的形式可以帮助我们推导出电和磁的径向分量和角向分量。对于电磁理论的学习者来说,理解这一过程是掌握电磁波传播特性的基础。具体来说,麦克斯韦方程组在圆柱坐标系中包括以下四个方程: 参考资源链接:[电磁与电磁波第7章课后习题解答](https://wenku.csdn.net/doc/5xs9wzdq5v?spm=1055.2569.3001.10343) 1. ∇·E = ρ/ε₀(高斯定律) 2. ∇·B = 0(无磁单极子定律) 3. ∇×E = -∂B/∂t(法拉第电磁感应定律) 4. ∇×B = μ₀J + μ₀ε₀∂E/∂t(安培定律) 其中,E和B分别代表电和磁,ρ代表电荷密度,J代表电流密度,ε₀和μ₀分别是真空中的电容率和磁导率。 在无源区域(ρ=0且J=0)中,安培定律可以简化为: ∇×B = μ₀ε₀∂E/∂t 利用圆柱坐标系下的旋度公式,我们可以得到: ∂Bz/∂ρ = -μ₀ε₀∂Eφ/∂t ∂Bρ/∂z - ∂Bz/∂ρ = μ₀ε₀∂Eρ/∂t 通过波动方程的形式,我们可以建立Eρ和Eφ与Bz的关系。假设Eρ和Eφ都只有ρ和z的依赖,那么可以进一步得到: Eρ = -1/(μ₀ε₀ω²) (∂²Bz/∂ρ∂z) Eφ = 1/(μ₀ε₀ω²ρ) (∂²Bz/∂z²) 通过对Bz进行求导,并代入上述公式,可以得到Eρ和Eφ的具体表达式。这一推导过程不仅依赖于麦克斯韦方程组的理解,还需要运用微分方程的知识,以及对圆柱坐标系下分量特性的熟悉。 为了深入理解这一过程,建议参阅《电磁与电磁波第7章课后习题解答》。该资料详细解释了西安交通大学出版的电磁与电磁波教材第七章的相关内容,为学生提供了具体的推导步骤和解答,能够帮助你更好地掌握在无源区域内如何从麦克斯韦方程推导出圆柱坐标系下的电磁分量Eρ和Eφ。 参考资源链接:[电磁与电磁波第7章课后习题解答](https://wenku.csdn.net/doc/5xs9wzdq5v?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

勤奋的大熊猫

你的鼓励将是我写作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值