目录
位函数法
思路:
引入辅助标量位函数,建各个立场分量与位函数的关系,求解位函数进而求解各个场分量
TM波:
1)TM波的场分量代入麦克斯韦方程组的两个旋度方程:
2)写出横向分量与纵向分量:
3)由(1)式:利用矢量恒等式∇×∇𝛷=0引入标量函数𝛷(𝑢1,𝑢2,𝑧)
4)由(4)式:右叉乘𝑎𝑧,利用矢量恒等式𝐴×𝐵×𝐶=𝐵(𝐴⋅𝐶)−𝐶(𝐴⋅𝐵)
得到:
代入𝐸𝑇得:
两边对z积分:
记:
5)由(3)式:两边点积𝑎𝑧
代入𝐻𝑇得:
利用矢量恒等式𝐴×𝐵×𝐶=𝐵(𝐴⋅𝐶)−𝐶(𝐴⋅𝐵):
得到:
6)模式电压与模式电流
模式电压𝑈(𝑧):描述电位函数/电场横向分量𝐸𝑇沿z方向的变化规律
模式电流𝐼(𝑧):描述磁场横向分量𝐻𝑇沿z方向的变化规律
7)至此已经求得TM波全部场分量:
8)利用(2)式求解𝑈(𝑧)、𝐼(𝑧)、𝜙(𝑢1,𝑢2)
右叉乘𝑎𝑧:
利用恒等式𝐴×𝐵×𝐶=𝐵(𝐴⋅𝐶)−𝐶(𝐴⋅𝐵):
等是两边都有∇𝑇,积分去掉∇𝑇:
整理:
两边乘𝑗𝜔𝜀/𝐼(𝑧)𝜙:
两边必为同一常数,令:
将:
代入上式,并对两边微分:
同理:
9)通解与波阻抗
10)TM波边界条件
在波导内表面边界,电场无切向分量,磁场无法向分量
因此:
在边界C上为零
TE波:
位函数满足的方程:
通解与波阻抗:
TE波各个场分量:
TE波边界条件:
n为曲线c的内法线矢量,C为波导横截面边界曲线
TEM波:
位函数满足的方程:
TEM波各场分量:
边界条件:
𝜏为曲线c的切线矢量