《微波原理与技术》学习笔记7波导理论-位函数法

文章详细介绍了利用位函数法求解TM波、TE波和TEM波的场分量及边界条件。首先通过建立位函数与场分量的关系,然后应用麦克斯韦方程组和矢量恒等式逐步推导出各种波的模式电压、模式电流以及通解和波阻抗。边界条件涉及到电场和磁场的特定分量在波导边界上的约束。
摘要由CSDN通过智能技术生成

目录

位函数法

        思路:

        TM波:

        TE波:

        TEM波:


位函数法

        思路:

                引入辅助标量位函数,建各个立场分量与位函数的关系,求解位函数进而求解各个场分量

        TM波:

                1)TM波的场分量代入麦克斯韦方程组的两个旋度方程:

                2)写出横向分量与纵向分量:

                3)由(1)式:利用矢量恒等式∇×∇𝛷=0引入标量函数𝛷(𝑢1,𝑢2,𝑧)

                4)由(4)式:右叉乘𝑎𝑧,利用矢量恒等式𝐴×𝐵×𝐶=𝐵(𝐴⋅𝐶)−𝐶(𝐴⋅𝐵)

                      得到:

                      代入𝐸𝑇得:

                      两边对z积分:

                      记:

                5)由(3)式:两边点积𝑎𝑧

                      代入𝐻𝑇得:

                      利用矢量恒等式𝐴×𝐵×𝐶=𝐵(𝐴⋅𝐶)−𝐶(𝐴⋅𝐵):

                      得到:

                6)模式电压与模式电流

                      模式电压𝑈(𝑧):描述电位函数/电场横向分量𝐸𝑇沿z方向的变化规律

                      模式电流𝐼(𝑧):描述磁场横向分量𝐻𝑇沿z方向的变化规律

                7)至此已经求得TM波全部场分量:

                8)利用(2)式求解𝑈(𝑧)、𝐼(𝑧)、𝜙(𝑢1,𝑢2)

                      右叉乘𝑎𝑧:

                      利用恒等式𝐴×𝐵×𝐶=𝐵(𝐴⋅𝐶)−𝐶(𝐴⋅𝐵):

                      等是两边都有∇𝑇,积分去掉∇𝑇:

                      整理:

                      两边乘𝑗𝜔𝜀/𝐼(𝑧)𝜙:

                      两边必为同一常数,令:

                      将:

                      代入上式,并对两边微分:

                      同理:

                9)通解与波阻抗

                10)TM波边界条件

                      在波导内表面边界,电场无切向分量,磁场无法向分量

                      因此:

                      在边界C上为零

        TE波:

                位函数满足的方程:

                通解与波阻抗:

                TE波各个场分量:

                TE波边界条件:

                n为曲线c的内法线矢量,C为波导横截面边界曲线

        TEM波:

                位函数满足的方程:

                TEM波各场分量:

                边界条件:

                𝜏为曲线c的切线矢量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Erq1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值