摘要
本研究利用最优因果熵(optimal causation entropy)方法生成了异步功能网络(aFN),并将其拓扑结构与网络神经科学研究中常用的基于相关性的同步功能网络(sFN)进行比较。使用来自《青春期酒精与神经发育国家联盟研究》(National Consortium on Alcohol and Neurodevelopment in Adolescence study)中的212名参与者的功能磁共振成像(fMRI)时间序列数据来生成aFN和sFN。为了展示aFN和sFN如何协同使用,本研究采用了多变量混合效应模型,探讨了年龄是否与节点效率相互作用,从而影响两个网络中的连接概率。在调整网络密度差异后,aFN的全局效率比sFN高,但局部效率低于sFN。在aFN中,具有最高输出全局效率的节点通常位于脑干和眶额皮层;而在sFN中,具有最高输入全局效率的节点通常位于默认模式网络(DMN)。年龄与aFN中的节点全局效率和sFN中的节点局部效率相互作用,进而影响连接概率。因此,sFN和aFN都提供了关于大脑功能连接的信息,而这些信息反映了功能连接的不同维度。
引言
目前已有许多利用神经影像数据研究大脑功能连接的方法,但最常用的方法是建立在近同步激活(表示功能连接)的概念之上(为简便起见,本文将近同步连接统称为同步连接)。虽然传统的同步网络为理解大脑功能提供了支撑,但它们的局限性在于,无法捕捉功能性大脑网络所具有的动态特性。近年来,有关时变同步网络的研究越来越受欢迎。此外,越来越多的研究正在探索大脑在同步连接的亚稳态之间转换的能力。虽然这些研究极大地丰富了我们对大脑功能的理解,但它们并未解释大脑是如何自主地引导功能连接的转变。
本研究认为,要理解同步网络是如何随时间变化的,就必须理解节点之间的异步关系。具体来说,本研究提出,大脑同步关系的变化可能是由异步关系所决定的。这些异步关系可以被建模为具有与无向同步网络相同节点的稀疏有向网络,但其连边在分布和意义上都与同步网络不同。
以往的神经成像研究使用了格兰杰因果关系和部分格兰杰因果关系,试图证明信息在大脑中的流动路径。基于转移熵的信息流研究方法也在先前的研究中得到了应用。格兰杰因果关系和转移熵方法都有其局限性,因为它们无法区分直接因果关系和间接因果关系。部分格兰杰因果关系在计算上非常复杂,对许多研究人员来说并不可行。动态因果模型(DCM)是理解大脑中因果关系的最常用方法之一。然而,由于该方法的复杂性,DCM目前仅限于处理包含较少数量脑区的网络,并且需要明确的假设来选择合适的推理过程。这限制了它作为全脑因果关系模型的效用,尤其是在底层网络拓扑结构未知的情况下。
网络神经科学领域之外的先前研究表明,利用最优因果熵(oCSE)可以从时间序列数据中推断出因果网络。这种方法非常有趣,因为它利用了信息论中的概念来确定直接的因果关系,区别于间接效应,同时允许非线性。与传统的基于同步关系的功能网络不同,基于因果熵的有向网络专注于揭示节点之间的因果关系,而不是仅仅依赖于它们的同步活动。本文将这些不受同步影响的因果网络称为异步功能网络(aFNs),以与神经影像数据网络分析中常见的同步功能网络(sFNs)进行区分。此外,最近的研究还展示了aFNs如何通过数学原理控制sFNs的重组过程。目前尚不清楚支配同步关系的异步关系这一概念是否适用于人脑功能。在对此进行深入研究之前,必须首先证明像oCSE这样的方法可以用于从人类神经影像数据中生成aFNs,并且这些网络应当能够提供一些sFNs中未曾体现的生物学意义。本研究旨在为未来探索aFNs是否在大脑同步关系变化中起调控作用奠定基础。
在这里,本研究使用青春期酒精与神经发育国家联盟研究(NCANDA)中的静息态fMRI数据来生成同步功能网络(sFNs)和异步功能网络(aFNs)。采用成对相关性和最优因果熵(oCSE)来分别生成sFNs和aFNs。重要的是,本研究选择使用oCSE来生成aFNs,因为与格兰杰因果关系或转移熵不同,oCSE能够区分直接关联和中介关联。本研究比较了aFNs和sFNs的拓扑结构。最后,举例说明了aFNs和sFNs如何提供互补信息,而这些信息仅凭单一网络是无法获得的。
方法
数据收集
所有数据均来自NCANDA,这是一项针对12-22岁青少年进行的多站点纵向神经影像学研究。本研究仅使用了来自加州大学圣地亚哥分校站点参与者的基线访问数据进行分析。由于之前使用NCANDA样本进行的研究报告了与扫描仪有关的fMRI数据差异,因此分析仅限于来自一个站点的数据,以避免不同扫描仪型号和站点位置所带来的混淆效应。之所以选择圣地亚哥站点进行分析,是因为该站点的功能性和结构性MRI扫描数据(n=212)最多。NCANDA的全部成像参数和协议已在之前的出版物中进行了描述。简而言之,圣地亚哥站点使用了一台配备八通道头部线圈的3T GE Discovery MR750扫描仪。通过在受试者的颈部和头部两侧放置带衬垫的头带,以最大限度地减少受试者的运动。采用反转恢复-扰相梯度回波(IR-SPGR)序列(重复时间[TR]=5.912ms,回波时间[TE]=1.93