复平面的拓扑

复分析:复平面的拓扑

C \mathbb{C} C在通常欧式距离 d ( z , w ) = ∣ z − w ∣ d(z,w)=|z-w| d(z,w)=zw下形成一个度量空间。下面讨论复平面的拓扑知识。

邻域: 设 z 0 z_0 z0是复平面 C \mathbb{C} C的任意一点,集合 Δ ( z 0 , δ ) = { z ∣ ∣ z − z 0 ∣ &lt; δ } \Delta(z_0,\delta)=\{z| |z-z_0|&lt;\delta\} Δ(z0,δ)={zzz0<δ}称为 z 0 z_0 z0 δ \delta δ-邻域。它是以 z 0 z_0 z0为中心, δ \delta δ为半径的圆盘。

集合 { z ∣ ∣ z − z 0 ∣ ≤ δ } \{z| |z-z_0|\leq\delta\} {zzz0δ}称为以 z 0 z_0 z0为中心, δ \delta δ为半径的闭圆盘,记为 Δ ( z 0 , δ ) ‾ \overline{\Delta(z_0,\delta)} Δ(z0,δ).

设集合 E ⊂ C E\subset\mathbb{C} EC, 如果 z 0 z_0 z0的任一邻域内有无穷多个点属于集合 E E E,则称 z 0 z_0 z0是集合 E E E的极限点,也称为聚点。

如果存在 z 0 z_0 z0的一个邻域 Δ ( z 0 , δ 0 ) \Delta(z_0,\delta_0) Δ(z0,δ0)使得 Δ ( z 0 , δ 0 ) ‾ ⊂ E \overline{\Delta(z_0,\delta_0)}\subset E Δ(z0,δ0)E,则称 z 0 z_0 z0为集合 E E E的内点。

如果 z 0 z_0 z0的任何邻域都同时包含 E E E中的点和不属于 E E E的点,则称 z 0 z_0 z0为集合 E E E的边界点。 E E E的所有边界点构成的集合称为 E E E的边界,记为 ∂ E \partial E E.

如果 z 0 ∈ E z_0\in E z0E, 但不是 E E E的极限点,则称为集合 E E E的孤立点。如果 z 0 ∉ E z_0\notin E z0/E且不是 E E E的极限点,则称为集合 E E E的外点。

如果集合 E ⊂ C E\subset \mathbb{C} EC中的每个点都是 E E E的内点,则称 E E E为开集。

如果集合 E ⊂ C E\subset \mathbb{C} EC中的每个聚点都属于 E E E,则称 E E E为闭集。

如果存在 R &gt; 0 R&gt;0 R>0使得 E ⊂ Δ ( 0 , R ) E\subset \Delta(0,R) EΔ(0,R),则称 E E E为有界集,否则称为无界集。

复平面 C \mathbb{C} C中的点集 D D D称为区域,如果满足:

  • (1) D D D是开集;
  • (2) D D D中的任意两点可通过属于 D D D中的曲线连接。(连通性)

即,连通的开集称为区域。

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值