【随机信号处理笔记】 Chapter5 复合假设检验

5.1 复合假设检验

信号并非完全确知的,信号的参量(初相、频率、幅度、到达时间)会受到干扰的影响。

复合假设:含有随机参量的假设称为复合假设

复合假设检验:对未知量按照贝叶斯准则就得参量的最大似然估计,并给出一个参量的估计值

5.2非相参检测

用于随机相位检测,规定相位在(0,2pi)上服从均匀分布

先验概率密度函数:

p 1 ( θ 0 ) = { 1 2 π 0 ≤ θ 0 ≤ 2 π 0 其他 p_{1}\left(\theta_{0}\right)=\left\{\begin{array}{cc}\frac{1}{2 \pi}& 0 \leq \theta_{0} \leq 2 \pi \\0 &\text{其他}\end{array}\right. p1(θ0)={2π100θ02π其他

判决关系:

在这里插入图片描述

若门限由二式(雷达中使用NP准则)决定,则用三式求得

在这里插入图片描述

4.3随机相位与振幅

假设:信号的相位与振幅在一段观测时间内不变。

幅度服从瑞利分布: f 2 ( ∣ a 0 ∣ ) = ∣ a 0 ∣ σ 0 2 exp ⁡ [ − ∣ a 0 ∣ 2 2 σ 0 2 ] , ∣ a 0 ∣ ≥ 0 , 2 σ 0 2 = E [ ∣ a 0 ∣ 2 ] f_{2}\left(\left|a_{0}\right|\right)=\frac{\left|a_{0}\right|}{\sigma_{0}^{2}} \exp \left[-\frac{\left|a_{0}\right|^{2}}{2 \sigma_{0}^{2}}\right], \left|a_{0}\right| \geq 0,2 \sigma_{0}^{2}=E[{|a_0|}^2] f2(a0)=σ02a0exp[2σ02a02],a00,2σ02=E[a02]

判决关系:

∣ ∫ 0 T x ( t ) s ∗ ( t ) d t ∣ ≷ H 0 H 1 λ 0 ′ N 0 N 0 + σ 0 2 exp ⁡ [ ( λ 0 ′ ) 2 σ 0 2 2 N 0 ( N 0 + σ 0 2 ) ] = λ 0 \left|\int_{0}^{T} x(t) s^{*}(t) d t\right|\gtrless_{H_{0}}^{H_{1}} \lambda'_{0}\\\frac{N_{0}}{N_{0}+\sigma_{0}^{2}} \exp \left[\frac{\left(\lambda_{0}^{\prime}\right)^{2} \sigma_{0}^{2}}{2 N_{0}\left(N_{0}+\sigma_{0}^{2}\right)}\right]=\lambda_{0} 0Tx(t)s(t)dtH0H1λ0N0+σ02N0exp[2N0(N0+σ02)(λ0)2σ02]=λ0

实现结构:
在这里插入图片描述

4.4随机频率信号

多普勒频移: f d = 2 v λ f_{d}=\frac{2 v}{\lambda} fd=λ2v(v是速度,远离为负,接近为正)

接收机构造:
在这里插入图片描述
MF: h i ( t ) = s ∗ ( T − t ) e − j 2 π f d i ( T − t ) h_{i}(t)=s^{*}(T-t) e^{-j 2 \pi f_{d i}(T-t)} hi(t)=s(Tt)ej2πfdi(Tt)

计算了频率范围内的平均似然比

各路匹配滤波器冲激响应: ∣ y ∣ = ∣ ∫ 0 T x ( t ) s ∗ ( t ) e − j 2 π f d t d t ∣ |y|=\left|\int_{0}^{T} x(t) s^{*}(t) e^{-j 2 \pi f_{d} t} d t\right| y=0Tx(t)s(t)ej2πfdtdt

如果频率、相位、振幅均随机:
在这里插入图片描述
包络检波换平方律检波,更换系数和贝塞尔函数为exp

4.5 随机到达时间检测

假设: { H 1 : x ( t ) = ∣ a 0 ∣ e j θ 0 e j 2 π ( f 0 + f d ) ( t − τ ) + n ( t ) ( 0 ≤ t ≤ T ) H 0 : x ( t ) = n ( t ) \left\{\begin{array}{l}H_{1}: x(t)=\left|a_{0}\right| e^{j \theta_{0}} e^{j 2 \pi\left(f_{0}+f_{d}\right)(t-\tau)}+n(t) \quad(0 \leq t \leq T) \\H_{0}: x(t)=n(t)\end{array}\right. {H1:x(t)=a0ejθ0ej2π(f0+fd)(tτ)+n(t)(0tT)H0:x(t)=n(t)

接收机构造:
在这里插入图片描述
利用了匹配滤波器对时间的适应性,将多通道转化为了单通道

4.6 随机频率与随机到达时间

接收机构造:

在这里插入图片描述

4.7 相参检测与非相参检测

相参检测:利用相位知识的检测,能够精确重现高频相位

组成:
在这里插入图片描述
非相参检测:不利用相位知识

组成:
在这里插入图片描述

  • 小信噪比下,相参检测要好
  • 大信噪比下,性能差不多
  • 非相参检测性能由于噪声变为瑞利分布,噪声尖头出现概率增大,而变差。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值