5.1 复合假设检验
信号并非完全确知的,信号的参量(初相、频率、幅度、到达时间)会受到干扰的影响。
复合假设:含有随机参量的假设称为复合假设
复合假设检验:对未知量按照贝叶斯准则就得参量的最大似然估计,并给出一个参量的估计值
5.2非相参检测
用于随机相位检测,规定相位在(0,2pi)上服从均匀分布
先验概率密度函数:
p 1 ( θ 0 ) = { 1 2 π 0 ≤ θ 0 ≤ 2 π 0 其他 p_{1}\left(\theta_{0}\right)=\left\{\begin{array}{cc}\frac{1}{2 \pi}& 0 \leq \theta_{0} \leq 2 \pi \\0 &\text{其他}\end{array}\right. p1(θ0)={2π100≤θ0≤2π其他
判决关系:
若门限由二式(雷达中使用NP准则)决定,则用三式求得
4.3随机相位与振幅
假设:信号的相位与振幅在一段观测时间内不变。
幅度服从瑞利分布: f 2 ( ∣ a 0 ∣ ) = ∣ a 0 ∣ σ 0 2 exp [ − ∣ a 0 ∣ 2 2 σ 0 2 ] , ∣ a 0 ∣ ≥ 0 , 2 σ 0 2 = E [ ∣ a 0 ∣ 2 ] f_{2}\left(\left|a_{0}\right|\right)=\frac{\left|a_{0}\right|}{\sigma_{0}^{2}} \exp \left[-\frac{\left|a_{0}\right|^{2}}{2 \sigma_{0}^{2}}\right], \left|a_{0}\right| \geq 0,2 \sigma_{0}^{2}=E[{|a_0|}^2] f2(∣a0∣)=σ02∣a0∣exp[−2σ02∣a0∣2],∣a0∣≥0,2σ02=E[∣a0∣2]
判决关系:
∣ ∫ 0 T x ( t ) s ∗ ( t ) d t ∣ ≷ H 0 H 1 λ 0 ′ N 0 N 0 + σ 0 2 exp [ ( λ 0 ′ ) 2 σ 0 2 2 N 0 ( N 0 + σ 0 2 ) ] = λ 0 \left|\int_{0}^{T} x(t) s^{*}(t) d t\right|\gtrless_{H_{0}}^{H_{1}} \lambda'_{0}\\\frac{N_{0}}{N_{0}+\sigma_{0}^{2}} \exp \left[\frac{\left(\lambda_{0}^{\prime}\right)^{2} \sigma_{0}^{2}}{2 N_{0}\left(N_{0}+\sigma_{0}^{2}\right)}\right]=\lambda_{0} ∣∣∣∣∣∫0Tx(t)s∗(t)dt∣∣∣∣∣≷H0H1λ0′N0+σ02N0exp[2N0(N0+σ02)(λ0′)2σ02]=λ0
实现结构:
4.4随机频率信号
多普勒频移: f d = 2 v λ f_{d}=\frac{2 v}{\lambda} fd=λ2v(v是速度,远离为负,接近为正)
接收机构造:
MF:
h
i
(
t
)
=
s
∗
(
T
−
t
)
e
−
j
2
π
f
d
i
(
T
−
t
)
h_{i}(t)=s^{*}(T-t) e^{-j 2 \pi f_{d i}(T-t)}
hi(t)=s∗(T−t)e−j2πfdi(T−t)
计算了频率范围内的平均似然比
各路匹配滤波器冲激响应: ∣ y ∣ = ∣ ∫ 0 T x ( t ) s ∗ ( t ) e − j 2 π f d t d t ∣ |y|=\left|\int_{0}^{T} x(t) s^{*}(t) e^{-j 2 \pi f_{d} t} d t\right| ∣y∣=∣∣∣∫0Tx(t)s∗(t)e−j2πfdtdt∣∣∣
如果频率、相位、振幅均随机:
包络检波换平方律检波,更换系数和贝塞尔函数为exp
4.5 随机到达时间检测
假设: { H 1 : x ( t ) = ∣ a 0 ∣ e j θ 0 e j 2 π ( f 0 + f d ) ( t − τ ) + n ( t ) ( 0 ≤ t ≤ T ) H 0 : x ( t ) = n ( t ) \left\{\begin{array}{l}H_{1}: x(t)=\left|a_{0}\right| e^{j \theta_{0}} e^{j 2 \pi\left(f_{0}+f_{d}\right)(t-\tau)}+n(t) \quad(0 \leq t \leq T) \\H_{0}: x(t)=n(t)\end{array}\right. {H1:x(t)=∣a0∣ejθ0ej2π(f0+fd)(t−τ)+n(t)(0≤t≤T)H0:x(t)=n(t)
接收机构造:
利用了匹配滤波器对时间的适应性,将多通道转化为了单通道
4.6 随机频率与随机到达时间
接收机构造:
4.7 相参检测与非相参检测
相参检测:利用相位知识的检测,能够精确重现高频相位
组成:
非相参检测:不利用相位知识
组成:
- 小信噪比下,相参检测要好
- 大信噪比下,性能差不多
- 非相参检测性能由于噪声变为瑞利分布,噪声尖头出现概率增大,而变差。