角点检测 拉格朗日 散度

这篇博客探讨了角点检测中的Harris角点检测方法,解释了如何通过矩阵M的特征值来判断角点。接着,介绍了拉格朗日条件,包括隐函数求导公式和拉格朗日乘数法,并在约束条件下求函数的极值。最后,阐述了空间向量场的散度概念及其在高斯公式中的应用。
摘要由CSDN通过智能技术生成

Harris 角点检测

dip课程笔记
Eu,vM=x,ywx,y[I(x+u,y+v)I(x,y)]2=x,ywx,y[uIx+vIy+O(u2+v2)]2x,yI2xu2+2IxIyuv+I2yv2=[uv]M[uv]=x,ywx,y[I2xIxIyIxIyI2y]=[ACCB](11)(12)(13)(14)(15) (11) E u , v = ∑ x , y w x , y [ I ( x + u , y + v ) − I ( x , y ) ] 2 (12) = ∑ x , y w x , y [ u I x + v I y + O ( u 2 + v 2 ) ] 2 (13) ≈ ∑ x , y I x 2 u 2 + 2 I x I y u v + I y 2 v 2 (14) = [ u v ] M [ u v ] (15) M = ∑ x , y w x , y [ I x 2 I x I y I x I y I y 2 ] = [ A C C B ]

λ1,λ2 λ 1 , λ 2 是M的两个特征值.

  • λ1,λ2 λ 1 , λ 2 都很小, 是在平坦的区域
  • λ1>>λ2 λ 1 >> λ 2 λ2>>λ1 λ 2 >> λ 1 , 是边
  • λ1,
拉格朗日插值是一种数学方法,用于估算在一个已知数据点集合上的未知函数值。当你有n个随机数据点 (x1, f(x1)), ..., (xn, f(xn)),并且想要找到一个函数L(x)使得在每个点上都满足f(xi),你可以使用拉格朗日基础多项式来构造这个插值函数。 拉格朗日插值的基本思想是利用每个数据点对应的拉格朗日基 polynomial L_i(x),其形式为: \[ L_i(x) = \prod_{j=0, j\neq i}^{n}(x - x_j) / \prod_{j=0, j\neq i}^{n}(x_i - x_j) \] 其中,i 表示第i个数据点,n是数据点的数量。 对于给定的随机数据点 (x1, f(x1)), ..., (xn, f(xn)),拉格朗日插值函数 L(x) 可以表示为: \[ L(x) = \sum_{i=1}^n f(x_i) \cdot L_i(x) \] 以下是 Python 中使用 `numpy` 库进行拉格朗日插值的一个简单示例: ```python import numpy as np def lagrange_interpolation(points): x, y = zip(*points) n = len(x) return lambda x: sum(y[i] * l(x, x_data=x, y_data=y, i=i) for i in range(n)) # 示例数据点 x_data = [1, 2, 3, 4] y_data = [2, 4, 6, 8] # 创建插值函数 interp_func = lagrange_interpolation(zip(x_data, y_data)) # 使用插值函数估计新的 x 值的函数值 new_x = 2.5 estimated_y = interp_func(new_x) print(f"插值后的值 at {new_x}: {estimated_y}") # 函数计算拉格朗日基 polynomial def l(x, x_data, y_data, i): denominator = 1 for j, (xx, yy) in enumerate(zip(x_data, y_data)): if j != i: denominator *= (x - xx) / (xx - x_data[i]) return denominator * y_data[i] ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值