车辆属性识别、车型识别

本文探讨了车辆属性识别在视频结构化中的挑战,着重于针对稀有车型的数据集增强策略,展示了V1.0到V2.0模型的测试结果,以及整体正确率提升。欲了解更多技术细节,请通过邮箱547691062@qq.com联系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

车辆属性识别目前在视频结构化模块是个比较难解决的部分,我们针对稀有车型做了很多优化,结果如下

数据集相比于之前数据集的数据量对比情况 针对少量类别的样本进行相应的增加, 增加举例如下

蓝色表示 原始少量的数据集, 黄色表示叠加的数据集数量,可以看出之前少量 数据集都有相对较多的增加。

测试结构对比 - 样本少的品牌对比: 车辆结构化V1.0版本模型的结果如下:

车辆结构化V2.0 版本模型的结果如下:

整体正确率

技术感兴趣联系

547691062@qq.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

NineDays66

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值