智能优化算法:萤火虫算法-附代码

智能优化算法:萤火虫算法-附代码


摘要:萤火虫算法(Fire-fly algorithm,FA)由剑桥大学 Yang 于 2009 年提出 , 作为最新的群智能优化算法之一 , 该算法具有更好的收敛速度和收敛精度 , 且易于工程实现等优点。

1.算法原理

在FA 中 , 萤火虫发出光亮的主要目的是作为一个信号系统 , 以吸引其他的萤火虫个体 , 其假设为 : 1) 萤火虫不分性别 , 它将会被吸引到所有其他比它更亮的萤火虫那去 ; 2) 萤火虫的吸引力和亮度成正比 , 对
于任何两只萤火虫 , 其中一只会向着比它更亮的另一只移动 , 然而 , 亮度是随着距离的增加而减少的 ;3) 如果没有找到一个比给定的萤火虫更亮 , 它会随机移动 。

如上所述 , 萤火虫算法包含两个要素 , 即亮度和吸引度 . 亮度体现了萤火虫所处位置的优劣并决定其移动方向 , 吸引度决定了萤火虫移动的距离 , 通过亮度和吸引度的不断更新 , 从而实现目标优化 . 从数学角度对萤火虫算法的主要参数进行如下描述 :

  1. 萤火虫的相对荧光亮度为:
    I = I 0 ∗ e − γ r i , j (1) I = I_0*e^{-\gamma r_{i,j}}\tag{1} I=I0eγri,j(1)
    其中 , I 0 I_0 I0为萤火虫的最大萤光亮度 , 与目标函数值相关 , 目标函数值越优自身亮度越高 ; γ \gamma γ为光强吸收系数 , 荧光会随着距离的增加和传播媒介的吸收逐渐减弱 ; r i , j r_{i,j} ri,j为萤火虫 i i i j j j 之间的空间距离 。

  2. 萤火虫的吸引度为
    β = β 0 ∗ e − γ r i , j 2 (2) \beta = \beta_0*e^{-\gamma r_{i,j}^2} \tag{2} β=β0eγri,j2(2)
    其中 , β 0 \beta_0 β0 为最大吸引度 ; γ \gamma γ为光强吸收系数 ; r i , j r_{i,j} ri,j为萤火虫 i i i j j j 之间的空间距离。

  3. 萤火虫 i 被吸引向萤火虫 j 移动的位置更新公式如式 (3) 所示 :
    x i = x i + β ∗ ( x j − x i ) + α ∗ ( r a n d − 1 / 2 ) (3) x_i = x_i +\beta*(x_j-x_i)+\alpha*(rand - 1/2) \tag{3} xi=xi+β(xjxi)+α(rand1/2)(3)
    其中 , x i , x j x_i,x_j xi,xj 为萤火虫 i i i j j j 所处的空间位置 ; α ∈ [ 0 , 1 ] α ∈[0,1] α[0,1] 为步长因子 ; r a n d rand rand 为 [0,1] 上服从均匀分布的随机数 。

算法步骤如下:

(1) 初始化萤火虫算法参数.

(2) 计算各萤火虫的亮度并排序得到亮度最大的萤火虫位置.

(3)判断迭代是否结束:判断是否达到最大迭代次数 T ,达到则转(4),否则转(5).

(4) 输出亮度最大的萤火虫位置及其亮度.

(5) 更新萤火虫位置:根据式(3)更新萤火虫的位置,对处在最佳位置的萤火虫进行随机扰动,搜索次数增加1 ,转(2),进行下一次搜索.

2.算法结果

在这里插入图片描述

3.参考文献

[1] Yang X S, Deb S. Eagle strategy using l´ evy walk and firefly algorithms for stochastic optimization. Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), Berlin Heidelberg: Springer, 2010. 101−111

[2] 田梦楚, 薄煜明, 陈志敏, et al. 萤火虫算法智能优化粒子滤波[J]. 自动化学报, 2016, 42(001):89-97.

4.Matlab代码

萤火虫算法
改进算法matlab代码

名称说明或者参考文献
一种改进的进化模型和混沌优化的萤火虫算法(FAEC)[1]李肇基,程科,王万耀,崔庆华.一种改进的进化模型和混沌优化的萤火虫算法[J].计算机与数字工程,2019,47(07):1605-1612.

算法相关应用

名称说明或者参考文献
萤火虫优化的BP神经网络(预测)https://blog.csdn.net/u011835903/article/details/112149776(原理一样,只是优化算法用萤火虫)
萤火虫优化的BP神经网络(分类)https://blog.csdn.net/u011835903/article/details/112149394(原理一样,只是优化算法用萤火虫)
基于萤火虫算法优化的SVM数据分类https://blog.csdn.net/u011835903/article/details/110523352(原理一样,只是优化算法用萤火虫)
萤火虫优化的最大熵多阈值分割https://blog.csdn.net/u011835903/article/details/108203775(原理一样,只是优化算法用萤火虫)
萤火虫算法优化的otsu多阈值分割https://blog.csdn.net/u011835903/article/details/108019744(原理一样,只是优化算法用萤火虫)
萤火虫优化的PID参数优化https://blog.csdn.net/u011835903/article/details/109306387(原理一样,只是优化算法用萤火虫)
基于萤火虫算法的无线传感器网(WSN)覆盖优化https://blog.csdn.net/u011835903/article/details/109262039(原理一样,只是优化算法用萤火虫)
基于萤火虫算法的3D无线传感器网(WSN)覆盖优化https://blog.csdn.net/u011835903/article/details/113834323(原理一样,只是优化算法用萤火虫)

个人资料介绍

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值