基于Sine混沌映射的麻雀搜索算法-附代码

本文探讨了如何利用Sine混沌映射改进麻雀搜索算法,以提高优化性能。首先介绍了Sine映射的混沌特性及其在[0,1]区间内的分布,展示其在初始化种群时的优势。接着详细阐述了基于Sine映射的麻雀搜索算法流程,包括种群初始化、适应度计算、位置更新等步骤。实验结果显示,这种改进策略能有效提升算法的全局搜索能力和收敛速度。最后,给出了Matlab和Python的实现参考。

基于Sine混沌映射的麻雀搜索算法

1.sine映射

sine映射是混沌映射的典型代表,它的数学形式很简单。其表达式如下:
x k + 1 = a 4 s i n ( π x k ) , a ∈ ( 0 , 4 ] (1) x_{k+1} =\frac{a}{4}sin(\pi x_k),a\in (0,4]\tag{1} xk+1=4asin(πxk),a(0,4](1)
sine表达式中x的范围为[0,1]。sine映射迭代200次的分布如下图所示:

请添加图片描述

从图种可以看出,sine映射分布在[0,1]之间,其混沌性来代替随机初始化,能够使种群在搜索空间更加均匀的分布。

2.基于sine映射的麻雀搜索算法

基础麻雀算法的具体原理参考,我的博客:https://blog.csdn.net/u011835903/article/details/108830958

该改进主要是在初始化种群时,利用sine映射初始化种群

算法流程

Step1: 利用sine映射策略初始化种群,迭代次数,初始化捕食者和加入者比列。

Step2:计算适应度值,并排序。

Step3:麻雀更新捕食者位置。

Step4:麻雀更新加入者位置。

Step5:麻雀更新警戒者位置。

Step6:计算适应度值并更新麻雀位置。

Step7:是否满足停止条件,满足则退出,输出结果,否则,重复执行Step2-6;

3.算法结果:

请添加图片描述

4.Matlab

5.python

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值