基于随机游走改进的麻雀搜索算法-附代码

本文介绍了结合随机游走策略的麻雀搜索算法,用于优化问题求解。首先,阐述了随机游走过程的数学模型及归一化方法,接着详细描述了基于随机策略的麻雀搜索算法步骤,包括种群初始化、位置更新等。算法通过在最优麻雀位置引入随机游走扰动,增强了全局和局部搜索能力。实验结果显示该算法在不同问题上的有效性和优越性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于随机游走改进的麻雀搜索算法

1.随机游走策略

随机游走的过程在数学上可以表示为:
X ( t ) = [ 0 , c u s s u m ( 2 r ( t 1 ) − 1 ) , . . . , c u s s u m ( 2 r ( t n ) − 1 ) ] (1) X(t)=[0,cussum(2r(t_{1})-1),...,cussum(2r(t_{n})-1)]\tag{1} X(t)=[0,cussum(2r(t1)1),...,cussum(2r(tn)1)](1)
式中: X ( t ) X(t) X(t)为随机游走的步数集; c u m s u m cumsum cumsum 为计算累加和; t t t 为随机游走的步数(本文取最大迭代次数); r ( t ) r(t) r(t)为一个随机函数,定义为
r ( t ) = { 1 , r a n d > 0.5 0 , r a n d ≤ 0.5 (2) r(t)=\begin{cases} 1,rand>0.5\\0,rand\leq0.5\end{cases} \tag{2} r(t)={1,rand>0.50,rand0.5(2)
式中: r a n d rand rand为[0,1]的随机数。

由于可行域存在边界,不能直接用式(1)更新蚂蚁的位置。为确保行走在可行域范围内随机游走,需根据式(3)对其进行归一化
X i t = ( X i t − a i ) ∗ ( d i t − c i t ) ( b i − a i ) + c i t (3) X_{i}^{t}=\frac {(X_{i}^{t}-a_{i})*(d_{i}^{t}-c_{i}^{t})}{(b_{i}-a_{i})}+c_{i}t\tag{3} Xit=(biai)(Xitai)(ditcit)+cit(3)
式中: a i a_{i} ai 为第$ i$ 维变量随机游走的最小值; b i b_{i} bi为第 i i i 维变量随机游走的最大值; c t i c_{t}^{i} cti为第 i i i维变量再第 t t t次迭代的最小值; d i t d_{i}^{t} dit为第 i i i 维变量在第$ t$ 次迭代最大值。

2.基于随机策略的麻雀搜索算法

基础麻雀算法的具体原理参考,我的博客:https://blog.csdn.net/u011835903/article/details/108830958

该改进主要是在麻雀搜索后,利用随机游走对最优麻雀进行扰动,提高其搜索性,在开始迭代之初,随机游走边界较大,有利于提高全局搜索性,在迭代多次后,游走边界变小,提高算法的最优位置局部搜索性。

算法流程

Step1: 初始化种群,迭代次数,初始化捕食者和加入者比列。

Step2:计算适应度值,并排序。

Step3:麻雀更新捕食者位置。

Step4:麻雀更新加入者位置。

Step5:麻雀更新警戒者位置。

Step6:计算适应度值并更新麻雀位置。

Step7. 利用随机游走更新最优麻雀

Step8.计算适应度值并更新麻雀位置。

Step9:是否满足停止条件,满足则退出,输出结果,否则,重复执行Step2-8;

3.算法结果:

请添加图片描述

4.Matlab

5.Python

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

智能算法研学社(Jack旭)

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值