1.摘要
本文提出了一种新型群体智能优化算法——基于麻雀搜索算法的强化麻雀搜索算法(ISSA)。ISSA通过采用新颖的邻域搜索策略和跳跃学习策略,不仅扩大了搜索范围,还有效增强了算法在迭代后期的探索能力。此外,ISSA还成功应用于两个实际工程设计问题,并用于优化长短期记忆网络(LSTM),进而发展出ISSA-LSTM模型,该模型在电力系统短期负荷预测方面表现优异,具有较低的误差率,优于多种LSTM变体。
2.麻雀搜索算法SSA 原理
3.强化麻雀搜索算法 Intensified sparrow search algorithm
为了优化探索与开发之间的平衡,本文对麻雀搜索算法(SSA)进行了改进,进而提出了强化麻雀搜索算法(ISSA)。ISSA引入了一种新的邻域搜索策略,该策略有效地利用当前种群信息以增强生产者的搜索能力。此外,受麻雀双脚跳跃行为的启发,本研究还提出了名为“跳跃学习”(SL)的新行走策略。这种策略能在不同维度间有效执行,以避免算法的过早收敛,并进一步增强食腐者的搜索能力。
领域搜索策略
在麻雀搜索算法(SSA)中,生产者可以激励其他麻雀在搜索过程中移向全局最优位置。传统的生产者存在以下缺点:一是未充分利用位置信息,导致早期迭代阶段可能忽略新的搜索区域;二是探索能力逐渐减弱,容易在迭代后期陷入局部最优。为了克服这些问题,本文提出了一种新的生产者选择策略——邻域搜索策略。在这种策略中,生产者是从其邻居中选择的最佳个体,通过随机选择种群中的麻雀个体并根据其个体范围R确定邻域边界,以期提高SSA的整体性能:
E
i
t
=
(
max
(
X
i
t
⋅
(
1
−
R
)
,
L
)
,
min
(
X
i
t
⋅
(
1
+
R
)
,
U
)
)
E_i^t=(\max(X_i^t\cdot(1-R),L),\min(X_i^t\cdot(1+R),U))
Eit=(max(Xit⋅(1−R),L),min(Xit⋅(1+R),U))
每个随机选择的麻雀个体 X i X_i Xi通过一个大黑圆来表示,其周围的小黑圆代表邻近区域内的其他麻雀个体。每个个体 X i X_i Xi的边界大小由参数 R R R控制,该参数随着迭代次数的变化而动态调整,公式为 R = 1 − t / G R = 1 - t/G R=1−t/G,其中 t t t代表当前的迭代次数, G G G为最大迭代次数。这种邻域搜索策略的引入使得算法能在迭代过程中尽可能地探索整个可行解空间,并有效防止在迭代后期探索能力的减弱,从而实现全局搜索与局部搜索之间的更好平衡。
跳跃学习
麻雀在自然环境中显示出极佳的适应性,特别是其双脚跳跃的行为,这一特点激发了一种新的觅食策略,即跳跃学习(SL),旨在增强算法的搜索能力。本文进一步发展了SL,通过修改相关公式,以提高收敛速率并避免陷入局部最优解,从而更好地适应于ISSA算法。
x
i
,
m
t
+
1
=
x
i
,
u
t
+
ϱ
⋅
(
x
best
,
v
t
−
x
worst
,
v
t
)
,
i
>
N
/
2
x_{i,m}^{t+1}=x_{i,u}^{t}+\varrho\cdot(x_{\text{best},v}^{t}-x_{\text{worst},v}^{t}),\quad i>N/2
xi,mt+1=xi,ut+ϱ⋅(xbest,vt−xworst,vt),i>N/2
伪代码
4.结果展示
CEC2017
5.参考文献
[1] Xue J, Shen B, Pan A. An intensified sparrow search algorithm for solving optimization problems[J]. Journal of Ambient Intelligence and Humanized Computing, 2023, 14(7): 9173-9189.