The machine learning practitioner has a tradition of algorithms and a pragmatic focus on results and model skill above other concerns such as model interpretability.
Statisticians work on much the same type of modeling problems under the names of applied statistics and statistical learning.Coming from a mathematical background, they have more of a focus on the behavior of models and explainability of predictions.
The statisticians need to consider algorithmic methods was called out in the classic two cultures paper.
Machine learning practitioners must also take heed, keep an open mind, and learn both the terminology and relevant methods from applied statistics.
After reading this blog, you will know:
- Machine learning and predictive modeling are a computer science perspective on modeling data with a focus on algorithmic methods and model skill.
- Statistics and statistical learning are a mathematical perspective on modeling data with a focus on data models and on goodness of fit.
- Machine learning practitioners must keep an open mind and leverage methods and understand the terminology from the closely related fields of applied statistics and statistical learning.
1.1 Machine Learning
Machine learning is a subfield of artificial intelligence and is related to the broader field of computer science. When it comes to developing machine learning models in order to make predictions, there is a heavy focus on algorithms, code, and results.
The field of machine learning is concerned with the question of how to construct computer programs that automatically improve with experience.
1.2 Predictive Modeling
The useful part of machine learning for the practitioner may be called predictive modeling.This explicitly ignores distinctions between statistics and machine learning. It also shucks off the broader objectives of statistics (understanding data) and machine learning (understanding learning in software) and only concerns itself, as its name suggests, with developing models that make predictions.
Predictive modeling provides a laser-focus on developing models with the objective of getting the best possible results with regard to some measure of model skill. This pragmatic approach often means that results in the form of maximum skill or minimum error are sought at the expense of almost everything else.
1.3 Statistical Learning
The process of working with a dataset and developing a predictive model is also a task in statistics. A statistician may have traditionally referred to the activity as applied statistics. Statistics is a subfield of mathematics, and this heritage gives a focus of well defined, carefully chosen methods.
Statistical learning refers to a set of tools for modeling and understanding complex datasets. It is a recently developed area in statistics and blends with parallel developments in computer science and, in particular, machine learning.

本文探讨了机器学习实践者与统计学家在数据建模上的不同视角,机器学习侧重算法与实际效果,而统计学则更关注模型行为和解释性。预测建模作为机器学习的一部分,专注于提升预测性能。统计学习则结合了统计方法和计算机科学,致力于理解和解析复杂数据。机器学习从业者应当借鉴统计学的方法和术语,以增强模型的解释性和全面性。
399

被折叠的 条评论
为什么被折叠?



