一文学会sklearn计算余弦相似度

余弦相似度在计算文本相似度等问题中有着广泛的应用,scikit-learn中提供了方便的调用方法
第一种,使用cosine_similarity,传入一个变量a时,返回数组的第i行第j列表示a[i]与a[j]的余弦相似度

>>> from sklearn.metrics.pairwise import cosine_similarity
>>> a=[[1,3,2],[2,2,1]]
>>> cosine_similarity(a)
array([[1.        , 0.89087081],
       [0.89087081, 1.        ]])

第二种使用pairwise_distances,注意该方法返回的是余弦距离,余弦距离= 1 - 余弦相似度,同样传入一个变量a时,返回数组的第i行第j列表示a[i]与a[j]的余弦距离

>>> from sklearn.metrics.pairwise import pairwise_distances
>>> pairwise_distances(a,metric="cosine")
array([[0.        , 0.10912919],
       [0.10912919, 0.        ]])
参考资源链接:[基于余弦相似度和证据距离的证据理论融合方法](https://wenku.csdn.net/doc/tcpt1qgcuy?utm_source=wenku_answer2doc_content) 在证据理论中,面对高冲突证据时,传统的Dempster-Shafer组合规则往往难以给出理想的融合结果,因为高冲突可能导致信息的不合理消减。为了解决这问题,可以采用余弦相似度和证据距离的概念,以改进证据的融合处理。 余弦相似度种广泛用于比较非零向量间方向致性的度量方法。在证据理论中应用余弦相似度有助于评估不同证据源之间的方向致性,从而识别它们是否指向决策空间中的相同方向。证据距离则是衡量证据之间差异的度量,用于捕捉证据之间的冲突程度。通过计算证据间的联合相似度,可以为每个证据分配加权系数,这些系数能够反映其在融合过程中的相对重要性。 具体操作步骤如下: 1. 计算证据集中的所有证据之间的余弦相似度,形成个相似度矩阵。 2. 利用相似度矩阵计算每个证据的证据距离。 3. 根据证据距离分配每个证据的加权系数,用于调整证据在融合过程中的重要性。 4. 应用加权平均法调整各个证据的权重,以体现它们的相对重要性。 5. 最后,使用Dempster-Shafer规则对调整后的加权证据进行组合。 这种方法的优势在于它能够同时考虑证据之间的相似性和冲突性,从而得到更加准确和合理的融合结果。在计算机与通信领域,特别是在多源信息融合、决策支持系统以及复杂系统分析等领域,这种方法具有重要的应用价值。 为了深入理解和掌握这改进方法,推荐阅读《基于余弦相似度和证据距离的证据理论融合方法》文。该文献由兰州理工大学计算机与通信学院的曹洁和郭雷雷撰写,详细介绍了这种新方法的理论基础和实现步骤,并通过案例分析展示了其在实际应用中的效果。通过对这篇文献的学习,你将能更加深入地理解证据理论在处理高冲突证据时的应用,并掌握种有效的问题解决策略。 参考资源链接:[基于余弦相似度和证据距离的证据理论融合方法](https://wenku.csdn.net/doc/tcpt1qgcuy?utm_source=wenku_answer2doc_content)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值