word2vec大规模语料及模型初始化

在处理大规模语料库时,由于内存限制,不能直接加载所有数据。本文介绍了一种解决方案,即在word2vec训练过程中,通过本地函数逐条读取文本,以避免内存不足的问题。
摘要由CSDN通过智能技术生成

word2vec训练目前只支持cpu,当我们训练大规模语料时,如果直接将所有的语料加载到内存,势必导致内存不足,一种解决方法是,训练时,从本地读取训练语料,这里提供一种本地读取文本函数如下:

def sentence2words(sentence, stopWords=False, stopWords_set=None):

    words = []  
    for word in sentence.split():
          words.append(word)
    return words

class MySentences(object):
    def __init__(self, list_csv):
       
        self.fns = list_csv

    def __iter__(self):
        for fn in self.fns:
            with open(fn, 'r') as f:
                for line in f:
                    yield sentence2words(line.strip())
list_csv为输入文件数组,例如我们有训练语料文件text1.txt.text2.txt,调用代码如下:


 files1=[]
    files1.append('text1.txt')
    files1.ap
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值