Deformable Convolutional可变形卷积回顾

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶”


作者:Sik-Ho Tsang

编译:ronghuaiyang

导读

使用可变形卷积,可以提升Faster R-CNN和R-FCN在物体检测和分割上的性能。只要增加很少的计算量,就可以得到性能的提升,非常好的文章,值的一看。


640?wx_fmt=png

(a) Conventional Convolution, (b) Deformable Convolution, (c) Special Case of Deformable Convolution with Scaling, (d) Special Case of Deformable Convolution with Rotation

传统/常规卷积基于定义的滤波器大小,在输入图像或一组输入特征图的预定义矩形网格上操作。该网格的大小可以是3×3和5×5等。然而,我们想要检测和分类的对象可能会在图像中变形或被遮挡。

在DCN中,网格是可变形的,因为每个网格点都可以通过一个可学习的偏移量移动卷积作用于这些移动的网格点上,因此称为可变形卷积,类似于可变形RoI池化的情况。通过使用这两个新模块,DCN提高了DeepLabFaster R-CNNR-FCN、和FPN等的准确率。

最后,MSRA使用DCN+FPN+Aligned Xception在COCO Detection Challenge中获得第二名,Segmentation Challenge中获得第三名。发表于2017 ICCV,引用次数超过200次

1. 可变形卷积

640?wx_fmt=png

可变形卷积

  • 规则的卷积是在一个规则的网格R上操作的。

  • R进行可变形卷积运算,但每个点都增加一个可学习的偏移∆pn

  • 卷积生成2N个特征图,对应N个2D个偏移量∆pn(每个偏移量对应有x-方向和y-方向)。

640?wx_fmt=png

标准卷积(左), 可变形卷积(右)
  • 如上所示,可变形卷积将根据输入图像或特征图在不同位置为卷积选择值。

  • 与Atrous convolution相比,Atrous convolution在卷积过程中具有较大但固定的膨胀值。(Atrous convolution也称为dilated convolution或hole算法。

  • 与Spatial Transformer Network (STN)比较:STN对输入图像或特征图进行变换,而可变形卷积可以被视为一个非常轻量级的STN。

2. Deformable RoI Pooling

640?wx_fmt=png

Deformable RoI Pooling

  • 常规RoI Pooling将任意大小的输入矩形区域转换为固定大小的特征。

  • 在Deformable RoI Pooling中,首先,在top path中,我们仍然需要常规的RoI Pooling来生成池化的feature map。

  • 然后,使用一个全连接(fc)层生成归一化的偏移∆p̂ij,然后转化为偏移∆pij(方程在右下角)其中γ= 0.1。

  • 偏移量归一化是必要的,使偏移量的学习不受RoI大小的影响。

  • 最后,在底部路径,我们执行deformable RoI pooling。输出特征图是基于具有增强偏移量的区域进行池化的

3. Deformable Positive-Sensitive (PS) RoI Pooling

640?wx_fmt=png

Deformable Positive-Sensitive (PS) RoI Pooling (在这里颜色很重要)

对于原始的R-FCN中的Positive-Sensitive (PS) RoI pooling,所有的输入特征图首先转换为每个类别k²个得分图(假设背景类总共C + 1个类别)(最好是读一下R-FCN,理解一下最初的PS RoI pooling)

  • 在deformable PS RoI pooling中,首先,在顶部路径上,和原始的相似, 卷积用于生成2k²(C + 1)得分图。

  • 这意味着,对于每个类别,有k²个特性图,这些特征图代表了我们要学习的物体的偏移量{上左(TL),上中(TC), . .,右下(BR)}。

  • 偏移量(顶部路径)的原始的PS RoI Pooling是使用图中相同的区域和相同的颜色来池化的。我们在这里得到偏移量。

  • 最后,在底部路径中,我们执行deformable PS RoI pooling来池化偏移量增强的特征图。

4. 可变形卷积用于ResNet-101 & Aligned-Inception-ResNet

4.1. Aligned-Inception-ResNet

640?wx_fmt=png

Aligned-Inception-ResNet Architecture (Left), Inception Residual Block (IRB) (Right)
  • 在原始的Inception-ResNet中,存在对齐问题,对于靠近输出的特征图上的单元格,其在图像上的投影空间位置与其感受野中心位置不一致。

  • Aligned-Inception-ResNet中,我们可以看到,在Inception Residual Block (IRB)中,所有用于分解的非对称卷积(例如:1×7,7×1,1×3,3×1 conv)都被删除了。如上所示,只使用了一种IRB类型。同样,IRB的数量也不同于incep-resnet -v1incep-resnet -v2

640?wx_fmt=png

Error Rates on ImageNet-1K validation.
  • Aligned-Inception-resnet的错误率低于ResNet-101。

  • 虽然Aligned-Inception-resnet的错误率高于Inception-resnet -v2,Aligned-Inception-resnet解决了对齐问题。

4.2. 修改ResNet-101 & Aligned-Inception-ResNet
  • 现在我们得到了两个主要的特征提取方法:ResNet-101和Aligned-Inception-resnet,这最初用于图像分类任务。

  • 但输出特征图太小,不利于目标检测和分割任务。

  • Atrous convolution(或dilated convolution)在最后一个block (conv5)的开头进行reduce, stride由2变为1。

  • 因此,最后一个卷积块的有效步长由32像素降低到16像素,提高了feature map的分辨率。

4.3. 不同的物体检测器
  • 特征提取后,使用不同的物体检测器或分割方案,如DeepLab、class-aware RPN(或被简化的SSD)、Faster R-CNNR-FCN

5. 对比研究和结果

5.1. 使用可变形卷积在不同数量的最后几层上

640?wx_fmt=png

ResNet-101中最后1、2、3和6个卷积层(3×3滤波器)中使用可变形卷积的结果

3和6个可变形卷积也很好。最后,作者选择3,因为可以很好地权衡用于不同的任务。

我们还可以看到DCN改进了DeepLab,class-aware RPN(或认为是简化的SSD),fast - R-CNN和R-FCN

5.2. 可变形卷积偏移距离分析

640?wx_fmt=png

最后3个卷积层的可变形卷积分析

640?wx_fmt=png

示例:三个级别的3×3可变形过滤器,用于背景上的三个激活单元(绿色点)(左侧)、一个小物体(中部)和一个大物体(右侧)
  • 上述分析亦说明了DCN的有效性。首先,根据ground truth bound box标注和滤波器中心的位置,将可变形卷积滤波器分为四类:small、medium、large和background。

  • 然后测量膨胀值(偏移距离)的均值和标准差。

  • 发现可变形滤波器的感受野大小与目标大小相关,说明可以有效地从图像内容中学习变形。

  • 背景区域的滤波器大小介于中、大物体之间,说明识别背景区域需要较大的感受野。

640?wx_fmt=png

在R-FCN和3×3个bins(红色)中,输入RoI(黄色)的偏移部分
  • 与可变形RoI pooling类似,现在部分被偏移以覆盖非刚性物体。

5.3. 在PASCAL VOC上和Atrous卷积对比

640?wx_fmt=png

  • 只使用可变形卷积:DeepLab,class-aware RPN, R-FCN使用可变形卷积都得到了改进,已经优于使用atrous convolution实现的DeepLab,RPN和R-FCN。与atrous convolution相比,Faster R-CNN使用可变形卷积更具有竞争优势。

  • 只使用Deformable RoI Pooling:在Faster R-CNN和R-FCN中只使用Deformable RoI Pooling。对于Faster-RCNN,两者差不多,对于R-FCN,Deformable RoI Pooling更好。

  • 使用可变形卷积和Deformable RoI Pooling:对于Faster R-CNN和R-FCN,使用可变卷积核可变ROI池化效果是最好的。

5.4. PASCAL VOC上的模型复杂度和运行时间

640?wx_fmt=png

模型复杂度和运行时间

  • 可变形卷积只在模型参数和计算上增加很小的开销

  • 除了增加模型参数之外,显著的性能改进来自于模型几何变换的能力。

640?wx_fmt=png— END—

英文原文:https://towardsdatascience.com/review-dcn-deformable-convolutional-networks-2nd-runner-up-in-2017-coco-detection-object-14e488efce44

640?wx_fmt=jpeg

请长按或扫描二维码关注本公众号

喜欢的话,请给我个好看吧640?wx_fmt=gif

  • 5
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
### 回答1: 可变形卷积网络(Deformable Convolutional Networks, DCN)是一种卷积神经网络,其允许卷积核的形状在运行时发生变化。这使得网络能够适应不同形状的目标,并在识别对象时获得更高的精度。DCN通过在普通卷积层上加入一个可变形控制层来实现可变形卷积。 ### 回答2: 可变形卷积网络(Deformable Convolutional Networks,DCN)是一种基于卷积神经网络(CNN)的改进技术。它是由微软亚洲研究院提出的一种新型的卷积实现。相比于传统的卷积操作,可变形卷积更加适合于图像中存在的错位、形变等问题。 可变形卷积网络使用了可变形卷积操作代替了普通的卷积操作。其主要思想是在空间结构中引入可变形卷积核,并利用其根据突出区域自适应进行偏移,从而获得更准确的分割结果。具体来说,可变形卷积使用了两个并行的转换网络,它们的输出结果被用来控制卷积核的偏移。一个转换网络用于生成偏移量,而另一个用于生成系数。 对于一个输入图像的像素点而言,传统的卷积操作使用的卷积核是在固定位置上的局部像素数据去学习特征的权重。而可变形卷积则引入了可变形卷积核,并增加了一个偏移量的学习过程。即可变形卷积核首先会根据突出区域自适应调整,形成具有方向性和形变性质的卷积核,再用这个卷积核去识别图像的特征。 总之,相比较于使用固定的卷积核来进行卷积操作,可变形卷积网络可以更加准确地提取图像的特征,消除像素错位的问题,并获得更加可靠和精准的预测结果。近年来,可变形卷积网络已经被广泛应用到目标检测、语义分割等领域,取得了不俗的成效。 ### 回答3: Deformable Convolutional Networks(可变形卷积网络)是一种基于卷积神经网络(CNN)的创新结构,能够自适应感受野来适应不同尺度的特征提取。传统CNN的卷积核是固定的,无法区分不同位置像素的重要性,而DCN则引入了可变形卷积来实现自适应调整卷积核,从而获得更好的特征提取能力。 DCN最大的特点就是在卷积操作中引入了可变形卷积,即使卷积核不断变形,也能够对图像中不同成分进行区分。具体来说,可变形卷积将每个卷积核拆分成两部分,一部分是原始卷积核,一部分则是从特征图中自适应生成的偏移量。通过调整偏移量,可变形卷积核能够自适应调整,以适应不同的图像区域,从而提高了准确率。 相对于传统CNN,DCN在许多领域都有了极大的优势。比如在目标检测中,DCN能够对于不同尺度的物体进行更好的特征提取,因此在各种目标检测任务中都取得了很不错的成果。在语义分割领域,DCN能够真正意义上地较好地适应于不规则的语义区域,能够更加准确地分割出更加复杂的物体。 总之,Deformable Convolutional Network 是一种创新结构,能够通过引入可变形卷积来提高图像特征提取的准确性,并在目标检测和分类、语义分割等领域中取得了良好的表现。未来,这种创新性结构还会不断地被应用于更加丰富多彩的图像识别场景中,带来更加优秀的表现。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值