GRU学习笔记

原理结构

GRU的输入输出和普通RNN一样。有一个当前的输入 x t x^t xt,和上一个节点传递下来的隐状态(hidden state) h t − 1 h^{t-1} ht1,这个隐状态包含了之前节点的相关信息。结合 x t x^t xt h t − 1 h^{t-1} ht1,GRU会得到当前隐藏节点的输出 y t y^t yt和传递给下一个节点的隐状态 h t h^t ht
在这里插入图片描述

  1. 通过 h t − 1 h^{t-1} ht1 x t x^t xt来获取两个门控状态。 r r r为控制重置的门控,z为控制更新的门控。
    在这里插入图片描述
    2.得到门控信号之后,使用重置门控来得到重置之后的数据 h t − 1 ′ = h t − 1 ⊗ r h^{{t-1}^{'}} = h^{t-1} \otimes r ht1=ht1r,再将 h t − 1 ′ h^{{t-1}^{'}} ht1与输入 x t x^t xt进行拼接,通过一个 t a n h tanh tanh激活函数将数据缩放到-1~1的范围内。在这里插入图片描述
    这部分属于选择记忆阶段, h ′ h^{'} h主要包含了当前输入 x t x^t xt,并有选择性地将 h ′ h^{'} h添加到当前的隐藏状态中。
  2. 更新记忆阶段。
    h t = ( 1 − z ) ⊗ h t − 1 + z ⊗ h ′ h^t = (1 - z)\otimes h^{t-1} + z \otimes h^{'} ht=(1z)ht1+zh
    这里的门控信号 z z z范围为[0, 1]。

卷积近似

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值