双目立体视觉法优缺点 ,以及改进方式

这篇博客探讨了纯视觉算法在计算复杂度和鲁棒性方面的挑战,特别是在单调缺乏纹理场景中的匹配困难。作者提出了一种改进方案,即结合图像分割和视差匹配算法,以提高精度和减少计算量。通过先进行画面分割,然后进行对齐算法,可以优化现有的扫描算法,尤其对镂空和网眼等复杂结构有更好的处理效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 简介: 比较好的算法是结合了图像分割和视差匹配算法.

   from OAK深度相机工作原理科普 - 知乎

纯视觉的方法,计算复杂度高。计算量大

        需要逐像素计算匹配;

        需要保证匹配结果比较鲁棒,

所以算法中会增加大量的错误剔除策略,对算法要求较高,

实现可靠商用难度大。

纯视觉的方法,不适用于单调缺乏纹理的场景。

由于双目立体视觉法根据视觉特征进行图像匹配,所以对于缺乏视觉特征的场景(如天空、白墙、沙漠等)会出现匹配困难,导致匹配误差较大甚至匹配失败。

 以及改进方式, 比较好的算法是结合了图像分割和视差匹配算法.

个人的想法

现在的算法:
    以右眼为主视眼,左眼在右眼上逐渐滑动,减法得到差图
    将差图堆叠,再卷积过滤
    得到视差图


双目板子,计算深度信息,对垂直的条纹明暗,对水平的不敏感,可以加入另外一对眼(正交布置)解决问题。


但是,人类的双眼如何只要水平布置,就能获得深度数据,不再需要另外一对垂直的眼??
    猫、苍蝇、虾也都是水平布置双眼,也许仅仅因为是左右对称身体的结果
    另外从数据来看,也许自然界中的垂直分量更多一些
        杂乱的条纹包含垂直分量,
        建筑物、直立的人和树木大多是垂直分量,

算法改进:
先做画面分割算法,再做对齐算法,
    比 现在的扫描算法结果更精确,算量更小
    对镂空和网眼的结果更好

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值