python的cv2.warpAffine()和cv2.warpPerspective()解析对比

本文深入讲解了OpenCV中两种图像几何变换:放射变换和透视变换。放射变换通过2×3的矩阵实现旋转、平移和缩放,保持平行线平行。透视变换则保持直线不变形,但平行线可能不再平行,适用于四点对应坐标变换。文章还介绍了如何通过特定函数获取变换矩阵。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、cv2.warpAffine()放射变换函数,可实现旋转,平移,缩放;变换后的平行线依旧平行

cv2.warpAffine(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None) --> dst

src:输入图像     dst:输出图像

M:2×3的变换矩阵

dsize:变换后输出图像尺寸

flag:插值方法

borderMode:边界像素外扩方式

borderValue:边界像素插值,默认用0填充

变换矩阵M可通过cv2.getAffineTransfrom(points1, points2)函数获得

变换矩阵的获取需要至少三组变换前后对应的点坐标,设取原图上的三个点组成矩阵points1,变换后的三个点组成的矩阵points2

如:

points1 = np.float32([ [30,30], [100,40], [40,100] ])
points2 = np.float32([ [60,60], [40,100], [80,20] ])

M  =  cv2.getAffineTransform(points1, points2)
   =  array([[-0.33333333,  0.33333333, 60.   ],
             [ 0.66666667, -0.66666667, 60.   ]])

Affine_img = cv2.warpAffine(img, M, (img.shape[1], img.shape[0])) 

  Affine_img是相对于原图img是以M变换后的图像,对于原图img上任何一点的坐标A(x, y)通过变换矩阵M变换后可在Affine_img上都能找到与之对应的坐标点A^{'}(x^{'}, y^{'}),变换方法为:

先构造一个3×1的矩阵a = [x, y, 1]^{T},则

A^{'}(x^{'}, y^{'}) = M\cdot a = \begin{bmatrix} m_{11} & m_{12} &m_{13} \\ m_{21}& m_{22}& m_{23} \end{bmatrix}\cdot \begin{bmatrix} x\\ y\\ 1 \end{bmatrix}

x^{'} = x*m_{11}+y*m_{12}+m_{13}

y^{'} = x*m_{21}+y*m_{22}+m_{23}

2、cv2.warpPerspective()透视变换函数,可保持直线不变形,但是平行线可能不再平行

cv2.warpPerspective(src, M, dsize, dst=None, flags=None, borderMode=None, borderValue=None) --> dst

其相关参数和cv2.warpAffine函数的类似,不再做介绍

它的变换矩阵可以通过cv2.getPerspectiveTransform()函数获得,其原理和cv2.getAffineTransfrom()相同,只是投射变换至少需要四组变换前后对应的点坐标,设取原图上的四个点组成矩阵points1,变换后的四个点组成的矩阵points2

如:

points1 = np.float32([ [30,30], [10,40], [40,10], [5,15] ])
points2 = np.float32([ [0,0], [400,0], [0,400], [400,400] ])

M = cv2.getPerspectiveTransform(points1, points2)
  = array([[-9.08777969e+00, -4.54388985e+00,  4.08950086e+02],
           [-5.37005164e+00, -1.07401033e+01,  4.83304647e+02],
           [-1.15318417e-02, -1.35972461e-02,  1.00000000e+00]])

Perspective_img = cv2.warpPerspective(img, M, (img.shape[1], img.shape[0])) 

Perspective_img是相对于原图img是以M变换后的图像,同理,对于原图img上任何一点的坐标A(x, y)通过变换矩阵M变换后可在Perspective_img上都能找到与之对应的坐标点A^{'}(x^{'}, y^{'}),变换方法为:

先构造一个3×1的矩阵a = [x, y, 1]^{T},则

M\cdot a = \begin{bmatrix} m_{11} & m_{12} &m_{13} \\ m_{21}& m_{22}& m_{23} \\ m_{31}& m_{32}& m_{33} \end{bmatrix}\cdot \begin{bmatrix} x\\ y\\ 1 \end{bmatrix}

x^{'} = \frac{x*m_{11}+y*m_{12}+m_{13}}{x*m_{31}+y*m_{32}+m_{33}}

y^{'} = \frac{x*m_{21}+y*m_{22}+m_{23}}{x*m_{31}+y*m_{32}+m_{33}}

 

另:旋转缩放变换矩阵M可通过cv2.getRotationMatrix2D(center, angle, scale)函数获得,再通过cv2.warpAffine函数对图像进行旋转缩放变换

center:旋转中心坐标;  angle:旋转角度;  scale:缩放尺度

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值